New Yamabe-type flow in a compact Riemannian manifold

被引:0
|
作者
Ma, Li [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Xueyuan Rd 30, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Yamabe-type flow; Global existence; Norm-preserving flow; Scalar curvature; Asymptotic behavior; PRESCRIBING GAUSSIAN CURVATURE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; CONVERGENCE;
D O I
10.1016/j.bulsci.2023.103244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we set up a new Yamabe type flow on a compact Riemannian manifold (M, g) of dimension n & GE; 3. Let & psi;(x) be any smooth function on M. Let p = n+2 n-2 and cn = 4(n-1) n-2 . We study the Yamabe-type flow u = u(t) satisfyingut = u1-p(cn & UDelta;u -& psi;(x)u) + r(t)u, in M x (0 , T) , T > 0withr(t) = M (cn| backward difference u|2 + & psi;(x)u2)dv/ M up+1 ,which preserves the Lp+1(M )-norm and we can show that for any initial metric u0 > 0, the flow exists globally. We also show that in some cases, the global solution converges to a smooth solution to the equationcn & UDelta;u - & psi;(x)u + r(& INFIN;)up = 0 , on M
引用
收藏
页数:19
相关论文
共 50 条
  • [31] SOLUTIONS OF SPINORIAL YAMABE-TYPE PROBLEMS ON Sm: PERTURBATIONS AND APPLICATIONS
    Isobe, Takeshi
    Xu, Tian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (09) : 6397 - 6446
  • [32] ON A TYPE OF RIEMANNIAN MANIFOLD
    Jawarneh, Musa A. A.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (02): : 123 - 126
  • [33] EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD
    CHEN, R
    AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (05) : 769 - 781
  • [34] A Girsanov type theorem on the path space over a compact Riemannian manifold
    Zhang, Jingxiao
    Kannan, D.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (03) : 667 - 678
  • [35] NODAL SOLUTIONS OF YAMABE-TYPE EQUATIONS ON POSITIVE RICCI CURVATURE MANIFOLDS
    Julio-Batalla, Jurgen
    Petean, Jimmy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4419 - 4429
  • [36] Solutions of Spinorial Yamabe-type Problems on Sm: Perturbations and Applications
    Isobe, Takeshi
    Xu, Tian
    arXiv, 2023,
  • [37] ON A YAMABE-TYPE PROBLEM ON A THREE-DIMENSIONAL THIN ANNULUS
    Ben Ayed, M.
    Hammami, M.
    El Mehdi, K.
    Ahmedou, M. Ould
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (07) : 813 - 840
  • [38] Gradient almost Yamabe solitons immersed into a Riemannian warped product manifold
    Tokura, Willian
    Adriano, Levi
    Batista, Elismar
    Bezzera, Adriano
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (03) : 541 - 556
  • [39] Extending Yamabe flow on complete Riemannian manifolds
    Ma, Li
    Cheng, Liang
    Zhu, Anqiang
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (08): : 882 - 891
  • [40] Solutions of the Equation of a Spinorial Yamabe-type Problem on Manifolds of Bounded Geometry
    Grosse, Nadine
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (01) : 58 - 76