Hermite-Hadamard and Fejer-type inequalities for generalized ?-convex stochastic processes

被引:2
|
作者
Bisht, Jaya [1 ]
Mishra, Rohan [2 ]
Hamdi, A. [3 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi, India
[2] Banaras Hindu Univ, Inst Sci, Dept Stat, Varanasi, India
[3] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, POB 2713, Doha, Qatar
关键词
Hermite-Hadamard inequality; convex stochastic processes; eta-convex stochastic processes; coordinated convex stochastic processes;
D O I
10.1080/03610926.2023.2218506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce the concept of (?(1),?(2))-convex stochastic processes on coordinates and establish Hermite-Hadamard-type inequality for these stochastic processes. Moreover, we prove new integral inequality of Hermite-Hadamard-Fejer type for newly defined coordinated ?-convex stochastic processes on a rectangle. The results presented in this article would provide extensions of those given in earlier works.
引用
收藏
页码:5299 / 5310
页数:12
相关论文
共 50 条
  • [21] New Fejer and Hermite-Hadamard Type Inequalities for Differentiable p-Convex Mappings
    Latif, Muhammad Amer
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (02): : 39 - 59
  • [22] On Fejer and Hermite-Hadamard type Inequalities involving h-Convex Functions and Applications
    Obeidat, Sofian
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (06): : 1 - 18
  • [23] Hermite-Hadamard inequality for convex stochastic processes
    Kotrys, Dawid
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 143 - 151
  • [24] On Hermite-Hadamard inequality for -convex stochastic processes
    Li, Libo
    Hao, Zhiwei
    AEQUATIONES MATHEMATICAE, 2017, 91 (05) : 909 - 920
  • [25] Some Hermite-Hadamard type inequalities for functions of generalized convex derivative
    Korus, P.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (2) : 463 - 473
  • [26] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS
    Set, Erhan
    Tomar, Muharrem
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (02): : 383 - 397
  • [27] New Inequalities of Fejer and Hermite-Hadamard type Concerning Convex and Quasi-Convex Functions With Applications
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    Obeidat, Sofian
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (02): : 1 - 17
  • [28] FEJER AND HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE h-CONVEX AND QUASI CONVEX FUNCTIONS WITH APPLICATIONS
    OBEIDAT, S. O. F. I. A. N.
    LATIF, M. A.
    DRAGOMIR, S. S.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 401 - 415
  • [29] GENERALIZED HERMITE-HADAMARD INEQUALITIES FOR (α, η, γ, δ ) - p CONVEX FUNCTIONS
    Bilal, Muhammad
    Dragomir, Silvestru sever
    Khan, Asif raza
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 145 - 186
  • [30] On fractional stochastic inequalities related to Hermite-Hadamard and Jensen types for convex stochastic processes
    Agahi, Hamzeh
    Babakhani, Azizollah
    AEQUATIONES MATHEMATICAE, 2016, 90 (05) : 1035 - 1043