Neural network operators with hyperbolic tangent functions

被引:7
|
作者
Baxhaku, Behar [1 ]
Agrawal, Purshottam Narain [2 ]
机构
[1] Univ Prishtina, Dept Math, Prishtina, Kosovo
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, India
关键词
Neural network operators; Sigmoidal functions; Tanh function; Modulus of continuity; APPROXIMATION OPERATORS; CONVERGENCE;
D O I
10.1016/j.eswa.2023.119996
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We determine the global errors occurring as a result of applying the method of approximate approximations to a function defined on a compact interval. By the method of extending a function to a wider interval, we obtain upper bounds on the error estimates in the uniform norm for continuous and differentiable functions by using these approximation tools. We extend this study to the bivariate case by constructing the associated approximate approximation neural network operators.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] q-Deformed hyperbolic tangent based Banach space valued ordinary and fractional neural network approximations
    George A. Anastassiou
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [42] Neural Operators for Hyperbolic PDE Backstepping Kernels
    Bhan, Luke
    Shi, Yuanyuan
    Krstic, Miroslav
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5202 - 5207
  • [43] New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions
    Chen, Xiao-Diao
    Nie, Long
    Huang, Wangkang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [44] Asymptotic Approximations of Apostol-Tangent Polynomials in terms of Hyperbolic Functions
    Corcino, Cristina B.
    Castaneda, Wilson D., Jr.
    Corcino, Roberto B.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 132 (01): : 133 - 151
  • [45] Asymptotic Approximations of Apostol-Tangent Polynomials in terms of Hyperbolic Functions
    Corcino C.B.
    Castañeda W.D., Jr.
    Corcino R.B.
    CMES - Computer Modeling in Engineering and Sciences, 2022, 131 (01): : 1 - 19
  • [47] Hyperbolic Binary Neural Network
    Chen, Jun
    Xiang, Jingyang
    Huang, Tianxin
    Zhao, Xiangrui
    Liu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [48] A digital circuit design of hyperbolic tangent sigmoid function for neural networks
    Lin, Che-Wei
    Wang, Jeen-Shing
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 856 - 859
  • [49] Efficient VLSI Implementation of Neural Networks With Hyperbolic Tangent Activation Function
    Zamanlooy, Babak
    Mirhassani, Mitra
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2014, 22 (01) : 39 - 48
  • [50] Novel Analog Implementation of a Hyperbolic Tangent Neuron in Artificial Neural Networks
    Shakiba, Fatemeh Mohammadi
    Zhou, MengChu
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (11) : 10856 - 10867