Optimization of the Number, Hub Height and Layout of Offshore Wind Turbines

被引:5
|
作者
Sun, Haiying [1 ]
Yang, Hongxing [2 ]
Tao, Siyu [3 ]
机构
[1] South China Univ Technol, Sch Biomed Sci & Engn, Guangzhou 511400, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Renewable Energy Res Grp, Hong Kong 999077, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211106, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
wind turbine number; hub height; genetic algorithm; wake effect; offshore wind farm layout optimization; PARTICLE SWARM OPTIMIZATION; FARM LAYOUT; GENETIC ALGORITHM; POWER; PLACEMENT; LOCATIONS;
D O I
10.3390/jmse11081566
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In order to make full use of the potential of wind resources in a specific offshore area, this paper proposes a new method to simultaneously optimize the number, hub height and layout of a wind farm. The wind farm is subdivided by grids, and the intersection points are set as the potential wind turbine positions. The method adopts a genetic algorithm and encodes wind farm parameters into chromosomes in binary form. The length of chromosomes is decided by the number of potential positions and the hub heights to be selected. The optimization process includes selection, crossover, and mutation, while the efficiency of wind farm is set as the optimization objective. The proposed method is validated by three benchmark cases. It has proven to be effective in deciding the number of turbines and improving the efficiency of the wind farm. Another advantage of the proposed method is that it can be widely applied to wind farms of any shape. A case study applying the new method to an irregularly shaped wind farm in Hong Kong is demonstrated. By comparing the results with the original regularly shaped wind farm, the new method can improve power generation by 6.28%. Therefore, the proposed model is a supportive tool for designing the best number, hub heights and positions of wind turbines.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Offshore wind farm layout optimization using particle swarm optimization
    Pillai A.C.
    Chick J.
    Johanning L.
    Khorasanchi M.
    Journal of Ocean Engineering and Marine Energy, 2018, 4 (01) : 73 - 88
  • [32] Optimization of wind farm turbines layout using an evolutive algorithm
    Serrano Gonzalez, Javier
    Gonzalez Rodriguez, Angel G.
    Castro Mora, Jose
    Riquelme Santos, Jesus
    Burgos Payan, Manuel
    RENEWABLE ENERGY, 2010, 35 (08) : 1671 - 1681
  • [33] Realistic wind farm design layout optimization with different wind turbines types
    Naima Charhouni
    Mohammed Sallaou
    Khalifa Mansouri
    International Journal of Energy and Environmental Engineering, 2019, 10 : 307 - 318
  • [34] A Review of Wind Farm Layout Optimization Techniques for Optimal Placement of Wind Turbines
    Pranupa, S.
    Sriram, A. T.
    Rao, S. Nagaraja
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2023, 13 (02): : 957 - 965
  • [35] Realistic wind farm design layout optimization with different wind turbines types
    Charhouni, Naima
    Sallaou, Mohammed
    Mansouri, Khalifa
    INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENTAL ENGINEERING, 2019, 10 (03) : 307 - 318
  • [36] DC Collection System Layout Optimization for Offshore Wind Farm
    Tahery, Hamid
    Kucuksari, Sadik
    2020 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2020,
  • [37] Wind Resource Analysis and Optimization of Offshore Wind Farm Layout in the Central Taiwan
    Chang, Pei-Chi
    Lai, Chi-Ming
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC), 2017, : 126 - 131
  • [38] Optimization of cable layout designs for large offshore wind farms
    Ulku, Ilayda
    Alabas-Uslu, Cigdem
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6297 - 6312
  • [39] Offshore wind farm layout optimization considering wake effects
    Dabbabi, Asma
    Bourguet, Salvy
    Loisel, Rodica
    Machmoum, Mohamed
    2020 22ND EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'20 ECCE EUROPE), 2020,
  • [40] Offshore wind farm layout optimization using ensemble methods
    Eikrem, Kjersti Solberg
    Lorentzen, Rolf Johan
    Faria, Ricardo
    Stordal, Andreas Storksen
    Godard, Alexandre
    RENEWABLE ENERGY, 2023, 216