The mitigation of microbial carbon and nitrogen limitations by shrub encroachment: extracellular enzyme stoichiometry of the alpine grassland on the Qinghai-Tibetan Plateau

被引:2
|
作者
Zhang, Ting [1 ]
Ma, Wenming [1 ]
Tian, Yu [2 ]
Bai, Song [3 ]
Dengzheng, Zuoma [1 ]
Zhang, Dong [1 ]
Ma, Xiangli [1 ]
Mu, Xianrun [1 ]
机构
[1] Southwest Minzu Univ, Inst Qinghai Tibetan Plateau, Chengdu 610041, Peoples R China
[2] Sichuan Acad Ecoenvironm Sci, Chengdu 610041, Peoples R China
[3] Southwest Minzu Univ, Coll Chem & Environm, Chengdu 610041, Peoples R China
基金
美国国家科学基金会;
关键词
Extracellular enzyme stoichiometry; Rhizosphere; Microbial nutrient limitation; Shrub encroachment; Qinghai-Tibetan Plateau; WOODY PLANT INVASION; ECOENZYMATIC STOICHIOMETRY; SOIL; FOREST; DYNAMICS; STORAGE; LITTER; DECOMPOSITION; AVAILABILITY; EFFICIENCY;
D O I
10.1007/s10533-023-01075-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Shrub encroachment changes the patterns of nutrition allocation in the below- and aboveground soil. However, influence of shrub encroachment on microbial carbon (C) and nitrogen (N) limitations remains unclear. Using the extracellular enzyme stoichiometry model, microbial nutrition limitations in bulk and rhizosphere soils at various soil layers were investigated at non-shrub alpine grasslands (GL) and shrub-encroached alpine grasslands including Spiraea alpina lands (SA), Caragana microphylla lands (CM) and Potentilla fruticosa lands (PF) on the Qinghai-Tibetan Plateau. We determined C-acquisition (beta-1,4-glucosidase (BG); beta-D-fibrinosidase (CBH)), N-acquisition (beta-1,4-N-acetylglucosaminidase (NAG); leucine aminopeptidase (LAP)) and phosphorus (P)-acquisition (acid phosphatase (AP)) enzyme activities. The contents of soil organic carbon (SOC) in top- and sub-soils significantly increased following shrub encroachment. Interestingly, (LAP + NAG) activities in subsoil increased following shrub encroachment. EC: N in subsoil decreased following shrub encroachment. Microbial C and N limitations were found in shrub-encroached and non-shrub alpine grasslands. Furthermore, microbial C and N limitations in bulk topsoil layers decreased following shrub encroachment. Microbial N limitations in subsoil decreased following shrub encroachment. This result indicates that shrub encroachment mitigated microbial C and N limitations. The limitations were gradually mitigated following shrub encroachment, which led to the decrease of the decomposition rate of organic carbon by microorganisms, indicating shrub encroachment might potentially contribute to SOC storage. In addition, the structural equation modeling (SEM) showed that increases of SOC and NH4+-N in top- and subsoils under shrub encroachment could mitigate microbial C and N limitations, respectively. This study provides available information on the environmental variables affecting the stoichiometry of extracellular enzymes following shrub encroachment, and the theoretical basis for the study of C and N cycling in alpine grasslands. [GRAPHICS] .
引用
收藏
页码:205 / 225
页数:21
相关论文
共 50 条
  • [31] Ecosystem services relationship characteristics of the degraded alpine shrub meadow on the Qinghai-Tibetan Plateau
    Qian, Dawen
    Li, Qian
    Guo, Xiaowei
    Fan, Bo
    Lan, Yuting
    Si, Mengke
    Cao, Guangmin
    ECOLOGY AND EVOLUTION, 2023, 13 (07):
  • [32] Effects of Nitrogen and Phosphorus Fertilization on Soil Carbon Fractions in Alpine Meadows on the Qinghai-Tibetan Plateau
    Li, Jin Hua
    Yang, Yu Jie
    Li, Bo Wen
    Li, Wen Jin
    Wang, Gang
    Knops, Johannes M. H.
    PLOS ONE, 2014, 9 (07):
  • [33] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    Shu-li Liu
    Yan-gong Du
    Fa-wei Zhang
    Li Lin
    Yi-kang Li
    Xiao-wei Guo
    Qian Li
    Guang-min Cao
    Journal of Mountain Science, 2016, 13 : 1806 - 1817
  • [34] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    Liu Shu-li
    Du Yan-gong
    Zhang Fa-wei
    Lin Li
    Li Yi-kang
    Guo Xiao-wei
    Li Qian
    Cao Guang-min
    JOURNAL OF MOUNTAIN SCIENCE, 2016, 13 (10) : 1806 - 1817
  • [35] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    LIU Shu-li
    DU Yan-gong
    ZHANG Fa-wei
    LIN Li
    LI Yi-kang
    GUO Xiao-wei
    LI Qian
    CAO Guang-min
    Journal of Mountain Science, 2016, 13 (10) : 1806 - 1817
  • [36] Correction: Corrigendum: Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau
    Fei Ren
    Xiaoxia Yang
    Huakun Zhou
    Wenyan Zhu
    Zhenhua Zhang
    Litong Chen
    Guangmin Cao
    Jin-Sheng He
    Scientific Reports, 7
  • [37] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    DING MingJun
    ZHANG YiLi
    SUN XiaoMin
    LIU LinShan
    WANG ZhaoFeng
    BAI WanQi
    Science Bulletin, 2013, (03) : 396 - 405
  • [38] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Quan-Ming Dong
    Xin-Quan Zhao
    Gao-Lin Wu
    Xiao-Feng Chang
    Environmental Earth Sciences, 2015, 73 : 2497 - 2503
  • [39] The perception of the alpine grassland adaptive management on the Qinghai-Tibetan Plateau: The concept and its implementation
    Yang, Xiaoxia
    Zhao, Xinquan
    Dong, Quanmin
    Yu, Yang
    Liu, Wenting
    Zhang, Chunping
    Cao, Quan
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (19): : 2526 - 2536
  • [40] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    Ding MingJun
    Zhang YiLi
    Sun XiaoMin
    Liu LinShan
    Wang ZhaoFeng
    Bai WanQi
    CHINESE SCIENCE BULLETIN, 2013, 58 (03): : 396 - 405