PINK1/Parkin pathway-mediated mitophagy by AS-IV to explore the molecular mechanism of muscle cell damage

被引:8
|
作者
Li, Lanqi [1 ,2 ]
Huang, Tingjuan [1 ,2 ]
Yang, Jie [1 ,2 ,4 ]
Yang, Peidan [1 ,2 ]
Lan, Haixia [3 ]
Liang, Jian
Cai, Donghong [1 ,2 ]
Zhong, Huiya [1 ,2 ]
Jiao, Wei [1 ,2 ]
Song, Yafang [1 ,2 ,5 ]
机构
[1] Guangzhou Univ Chinese Med, Sci & Technol Innovat Ctr, Guangzhou, Guangdong, Peoples R China
[2] Guangzhou Univ Chinese Med, Inst Pi Wei, Guangzhou, Guangdong, Peoples R China
[3] 969th Hosp PLA joint Logist Support Force, Dept Pediat, Hohhot, Inner Mongolia, Peoples R China
[4] Guangzhou Univ Chinese Med, Sch Pharmaceut Sci, Guangzhou, Guangdong, Peoples R China
[5] Guangzhou Univ Chinese Med, Inst Pi Wei, Sci & Technol Innovat Ctr, 12 Baiyun Dist Airport Rd, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Astragaloside IV; PINK1/Parkin pathway; Mitophagy; Myocyte injury; OXIDATIVE STRESS; MITOCHONDRIAL DYSFUNCTION; ASTRAGALOSIDE IV; AUTOPHAGY; APOPTOSIS; PINK1;
D O I
10.1016/j.biopha.2023.114533
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: Functional disorders of mitochondria are closely related to muscle diseases. Many studies have also shown that oxidative stress can stimulate the production of a large number of reactive oxygen species (ROS), which have various adverse effects on mitochondria and can damage muscle cells. Purpose: In this study, based on our previous research, we focused on the PINK1/Parkin pathway to explore the mechanism by which AS-IV alleviates muscle injury by inhibiting excessive mitophagy. Methods: L6 myoblasts were treated with AS-IV after stimulation with hydrogen peroxide (H2O2) and carbonyl cyanide m-chlorophenylhydrazone (CCCP). Then, we detected the related indices of oxidative stress and mitophagy by different methods. A PINK1 knockdown cell line was established by lentiviral infection to obtain further evidence that AS-IV reduces mitochondrial damage through PINK1/Parkin. Results: After mitochondrial damage, the expression of malondialdehyde (MDA) and intracellular ROS in L6 myoblasts significantly increased, while the expression of superoxide dismutase (SOD) and ATP decreased. The mRNA and protein expression levels of Tom20 and Tim23 were decreased, while those of VDAC1 were increased. PINK1, Parkin, and LC3 II mRNA and protein expression increased, and P62 mRNA and protein expression decreased.H2O2 combined with CCCP strongly activated the mitophagy pathway and impaired mitochondrial function. However, abnormal expression of these factors could be reversed after treatment with AS-IV, and excessive mitochondrial autophagy could also be reversed, thus restoring the regulatory function of mitochon-dria. However, AS-IV-adjusted function was resisted after PINK1 knockdown. Conclusion: AS-IV is a potential drug for myasthenia gravis (MG), and its treatment mechanism is related to mediating mitophagy and restoring mitochondrial function through the PINK1/Parkin pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Taurine rescues intervertebral disc degeneration by activating mitophagy through the PINK1/Parkin pathway
    Lin, Shengyuan
    Li, Tao
    Zhang, Bin
    Wang, Peng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 739
  • [32] Aloe gel glucomannan induced colon cancer cell death via mitochondrial damage-driven PINK1/Parkin mitophagy pathway
    Zhang, Ke
    Zhang, Duoduo
    Wang, Junqiao
    Wang, Yuting
    Hu, Jiarui
    Zhou, Yujia
    Zhou, Xingtao
    Nie, Shaoping
    Xie, Mingyong
    CARBOHYDRATE POLYMERS, 2022, 295
  • [33] To Explore the Protective Mechanism of PTEN-Induced Kinase 1 (PINK1)/Parkin Mitophagy-Mediated Extract of Periplaneta Americana on Lipopolysaccharide Induced Cardiomyocyte Injury
    Li, Lie
    Shi, Wei
    Zhang, Jun
    Ren, Liqun
    MEDICAL SCIENCE MONITOR, 2019, 25 : 1383 - 1391
  • [34] Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway
    Gu, Xueyan
    Qi, Yongmei
    Feng, Zengxiu
    Ma, Lin
    Gao, Ke
    Zhang, Yingmei
    TOXICOLOGY LETTERS, 2018, 291 : 92 - 100
  • [35] PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB1-induced liver injury in mice
    Wang, Qi
    Jia, Fubo
    Guo, Chen
    Wang, Yuping
    Zhang, Xuliang
    Cui, Yilong
    Song, Miao
    Cao, Zheng
    Li, Yanfei
    FOOD AND CHEMICAL TOXICOLOGY, 2022, 164
  • [36] Paraquat Exposure Induces Pulmonary Cell Mitophagy by Enhancing the PINK1/Parkin Signaling
    Liu Kaixiang
    Zhan Zhipeng
    Gao Wei
    Feng Jie
    Xie Xisheng
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [37] NDP52 acts as a redox sensor in PINK1/Parkin-mediated mitophagy
    Kataura, Tetsushi
    Otten, Elsje G.
    Rabanal-Ruiz, Yoana
    Adriaenssens, Elias
    Urselli, Francesca
    Scialo, Filippo
    Fan, Lanyu
    Smith, Graham R.
    Dawson, William M.
    Chen, Xingxiang
    Yue, Wyatt W.
    Bronowska, Agnieszka K.
    Carroll, Bernadette
    Martens, Sascha
    Lazarou, Michael
    Korolchuk, Viktor, I
    EMBO JOURNAL, 2023, 42 (05):
  • [38] Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease
    Miller, Silke
    Muqit, Miratul M. K.
    NEUROSCIENCE LETTERS, 2019, 705 : 7 - 13
  • [39] Gefitinib facilitates PINK1/Parkin-mediated mitophagy by enhancing mitochondrial recruitment of OPTN
    Li, Ningning
    Sun, Shan
    Ma, Guoqiang
    Hou, Hongyu
    Ma, Qilian
    Zhang, Li
    Zhang, Zengli
    Wang, Hongfeng
    Ying, Zheng
    FUNDAMENTAL RESEARCH, 2022, 2 (05): : 807 - 816
  • [40] PINK1/Parkin-mediated mitophagy in mechanical ventilation-induced diaphragmatic dysfunction
    Yong, Hui
    Zhou, Yun
    Ye, Wanlin
    Li, Tianmei
    Wu, Gangming
    Chen, Jingyuan
    Liu, Li
    Wei, Jicheng
    THERAPEUTIC ADVANCES IN RESPIRATORY DISEASE, 2021, 15