Localized Sparse Incomplete Multi-View Clustering

被引:63
|
作者
Liu, Chengliang [1 ]
Wu, Zhihao [1 ]
Wen, Jie [1 ]
Xu, Yong [2 ,3 ]
Huang, Chao [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[3] Pengcheng Lab, Shenzhen 518055, Peoples R China
关键词
Common latent representation; graph embedding; incomplete multi-view clustering; matrix factorization;
D O I
10.1109/TMM.2022.3194332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Incomplete multi-view clustering, which aims to solve the clustering problem on the incomplete multi-view data with partial view missing, has received more and more attention in recent years. Although numerous methods have been developed, most of the methods either cannot flexibly handle the incomplete multi-view data with arbitrary missing views or do not consider the negative factor of information imbalance among views. Moreover, some methods do not fully explore the local structure of all incomplete views. To tackle these problems, this paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC). Different from the existing methods, LSIMVC intends to learn a sparse and structured consensus latent representation from the incomplete multi-view data by optimizing a sparse regularized and novel graph embedded multi-view matrix factorization model. Specifically, in such a novel model based on the matrix factorization, a norm based sparse constraint is introduced to obtain the sparse low-dimensional individual representations and the sparse consensus representation. Moreover, a novel local graph embedding term is introduced to learn the structured consensus representation. Different from the existing works, our local graph embedding term aggregates the graph embedding task and consensus representation learning task into a concise term. Furthermore, to reduce the imbalance factor of incomplete multi-view learning, an adaptive weighted learning scheme is introduced to LSIMVC. Comprehensive experimental results performed on six incomplete multi-view databases verify that the performance of our LSIMVC is superior to the state-of-the-art IMC approaches.
引用
收藏
页码:5539 / 5551
页数:13
相关论文
共 50 条
  • [21] Binary multi-view sparse subspace clustering
    Zhao, Jianxi
    Li, Yang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21751 - 21770
  • [22] Binary multi-view sparse subspace clustering
    Jianxi Zhao
    Yang Li
    Neural Computing and Applications, 2023, 35 : 21751 - 21770
  • [23] Deep Multi-view Sparse Subspace Clustering
    Tang, Xiaoliang
    Tang, Xuan
    Wang, Wanli
    Fang, Li
    Wei, Xian
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 115 - 119
  • [24] Incomplete multi-view clustering with multiple imputation and ensemble clustering
    Guoqing Chao
    Songtao Wang
    Shiming Yang
    Chunshan Li
    Dianhui Chu
    Applied Intelligence, 2022, 52 : 14811 - 14821
  • [25] Incomplete multi-view clustering with multiple imputation and ensemble clustering
    Chao, Guoqing
    Wang, Songtao
    Yang, Shiming
    Li, Chunshan
    Chu, Dianhui
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14811 - 14821
  • [26] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [27] Fast and General Incomplete Multi-view Adaptive Clustering
    Ji, Xia
    Yang, Lei
    Yao, Sheng
    Zhao, Peng
    Li, Xuejun
    COGNITIVE COMPUTATION, 2023, 15 (02) : 683 - 693
  • [28] Auto-Weighted Incomplete Multi-View Clustering
    Deng, Wanyu
    Liu, Lixia
    Li, Jianqiang
    Lin, Yijun
    IEEE ACCESS, 2020, 8 : 138752 - 138762
  • [29] Fast and General Incomplete Multi-view Adaptive Clustering
    Xia Ji
    Lei Yang
    Sheng Yao
    Peng Zhao
    Xuejun Li
    Cognitive Computation, 2023, 15 : 683 - 693
  • [30] Efficient and Effective Regularized Incomplete Multi-View Clustering
    Liu, Xinwang
    Li, Miaomiao
    Tang, Chang
    Xia, Jingyuan
    Xiong, Jian
    Liu, Li
    Kloft, Marius
    Zhu, En
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2634 - 2646