On a class of Cheeger inequalities

被引:0
|
作者
Briani, Luca [1 ]
Buttazzo, Giuseppe [1 ]
Prinari, Francesca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Sci Agr Alimentari & Agroambientali, Via Borghetto 80, I-56124 Pisa, Italy
关键词
Cheeger constant; Principal eigenvalue; Shape optimization; p-Laplacian; EIGENVALUE; UNIQUENESS; FREQUENCY; INRADIUS;
D O I
10.1007/s10231-022-01255-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general version of the Cheeger inequality by considering the shape functional F-p,F-q(Omega) = lambda(1/p)(p)(Omega)/lambda q(1/q)(Omega). The infimum and the supremum of F-p,F-q are studied in the class of all domains Omega of R-d and in the subclass of convex domains. In the latter case the issue concerning the existence of an optimal domain for F-p,F-q is discussed.
引用
收藏
页码:657 / 678
页数:22
相关论文
共 50 条
  • [21] Cheeger Inequalities for General Edge-Weighted Directed Graphs
    Chan, T-H. Hubert
    Tang, Zhihao Gavin
    Zhane, Chenzi
    COMPUTING AND COMBINATORICS, 2015, 9198 : 30 - 41
  • [22] On the optimality of J. Cheeger and P. Buser inequalities
    Colbois, B
    Matei, AM
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 19 (03) : 281 - 293
  • [23] Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians
    Lange, Carsten
    Liu, Shiping
    Peyerimhoff, Norbert
    Post, Olaf
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) : 4165 - 4196
  • [24] A dilogarithmic formula for the Cheeger-Chern-Simons class
    Dupont, Johan L.
    Zickert, Christian K.
    GEOMETRY & TOPOLOGY, 2006, 10 : 1347 - 1372
  • [25] Sharp Cheeger-Buser Type Inequalities in RCD (K, ∞) Spaces
    De Ponti, Nicolo
    Mondino, Andrea
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 2416 - 2438
  • [26] The equality case in Cheeger's and Buser's inequalities on RCD spaces
    De Ponti, Nicolo
    Mondino, Andrea
    Semola, Daniele
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (03)
  • [27] Submodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering
    Li, Pan
    Milenkovic, Olgica
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [28] Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities
    Fusco, Nicola
    Maggi, Francesco
    Pratelli, Aldo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2009, 8 (01) : 51 - 71
  • [29] Sharp edge, vertex, and mixed cheeger inequalities for finite markov kernels
    Montenegro, Ravi
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 377 - 389
  • [30] Cheeger-like inequalities for the largest eigenvalue of the graph Laplace operator
    Jost, Jurgen
    Mulas, Raffaella
    JOURNAL OF GRAPH THEORY, 2021, 97 (03) : 408 - 425