On a class of Cheeger inequalities

被引:0
|
作者
Briani, Luca [1 ]
Buttazzo, Giuseppe [1 ]
Prinari, Francesca [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Sci Agr Alimentari & Agroambientali, Via Borghetto 80, I-56124 Pisa, Italy
关键词
Cheeger constant; Principal eigenvalue; Shape optimization; p-Laplacian; EIGENVALUE; UNIQUENESS; FREQUENCY; INRADIUS;
D O I
10.1007/s10231-022-01255-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general version of the Cheeger inequality by considering the shape functional F-p,F-q(Omega) = lambda(1/p)(p)(Omega)/lambda q(1/q)(Omega). The infimum and the supremum of F-p,F-q are studied in the class of all domains Omega of R-d and in the subclass of convex domains. In the latter case the issue concerning the existence of an optimal domain for F-p,F-q is discussed.
引用
收藏
页码:657 / 678
页数:22
相关论文
共 50 条