Prediction of zwitterion hydration and ion association properties using machine learning

被引:2
|
作者
Christiansen, Daniel [1 ]
Cheng, Gang [1 ]
Mehraeen, Shafigh [1 ]
机构
[1] Univ Illinois, Dept Chem Engn, 929 West Taylor St, Chicago, IL 60607 USA
关键词
SPACER LENGTH; SURFACE; CARBOXYBETAINE; CONDUCTIVITY; POTENTIALS; CHARGES; DESIGN;
D O I
10.1039/d3sm00062a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations were performed to study the hydration and ion association properties of a library of zwitterionic molecules with varying charged moieties and spacer chemistries in pure water and with Na+ and Cl- ions. The structure and dynamics of associations were calculated using the radial distribution and residence time correlation function. Resulting association properties are used as target variables for a machine learning model, with cheminformatic descriptors of the molecule subunits used as descriptors. Prediction of hydration properties revealed that steric and hydrogen bonding descriptors were of greatest importance and there was influence from the cationic moiety on the anionic moiety hydration properties. Ion association properties prediction performed poorly, which is attributed to the role of hydration layers in ion association dynamics. This study is the first to quantitatively describe the influence of subunit chemistry on hydration and ion association properties of zwitterions. These quantitative descriptions supplement prior studies of zwitterion association and previously described design principles.
引用
收藏
页码:3179 / 3189
页数:11
相关论文
共 50 条
  • [41] Modeling and Prediction of Temporal Biogeomechanical Properties Using Novel Machine Learning Approach
    Oladoyin Kolawole
    Rayan H. Assaad
    Rock Mechanics and Rock Engineering, 2023, 56 : 5635 - 5655
  • [42] Prediction of Mechanical Properties of the 2024 Aluminum Alloy by Using Machine Learning Methods
    Ozkavak, Hatice Varol
    Ince, Murat
    Bicakli, Ezgi Eylem
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (03) : 2841 - 2850
  • [43] Prediction of the mechanical properties of wood using guided wave propagation and machine learning
    Fathi, Hamidreza
    Nasir, Vahid
    Kazemirad, Siavash
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 262
  • [44] Modeling and Prediction of Temporal Biogeomechanical Properties Using Novel Machine Learning Approach
    Kolawole, Oladoyin
    Assaad, Rayan H.
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (08) : 5635 - 5655
  • [45] Prediction of nanocomposite properties and process optimization using persistent homology and machine learning
    Uesugi, Fumihiko
    Wen, Yu
    Hashimoto, Ayako
    Ishii, Masashi
    MICRON, 2024, 183
  • [46] Prediction of Mechanical Properties of the 2024 Aluminum Alloy by Using Machine Learning Methods
    Hatice Varol Özkavak
    Murat İnce
    Ezgi Eylem Bıçaklı
    Arabian Journal for Science and Engineering, 2023, 48 : 2841 - 2850
  • [47] Prediction of concrete coefficient of thermal expansion and other properties using machine learning
    Nilsen, Vanessa
    Pham, Le T.
    Hibbard, Michael
    Klager, Adam
    Cramer, Steven M.
    Morgan, Dane
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 220 : 587 - 595
  • [48] Machine Learning Assisted Prediction Algorithm of Atmospheric Ion Mobility
    Yi, Yong
    Chen, Zhengying
    Wang, Liming
    IEEE ACCESS, 2020, 8 : 150142 - 150149
  • [49] Vehicle count prediction using machine learning
    Peram, Subba Rao
    Lekha, Mundru Sri
    Jyothsna, Kothagundla Sai Sri
    Pallavi, Kunisetty Lakshmi
    Hema, V
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 706 - 712
  • [50] Class Result Prediction using Machine Learning
    Pushpa, S. K.
    Manjunath, T. N.
    Mrunal, T., V
    Singh, Amartya
    Suhas, C.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 1208 - 1212