Reproducing inversion formulas and uncertainty principles for the windowed fourier transform related to the spherical mean operator

被引:0
|
作者
Hleili, Khaled [1 ,2 ]
机构
[1] Northern Borders Univ, Fac Sci, Dept Math, Ar Ar, Saudi Arabia
[2] Preparatory Inst Engn Studies Kairouan, Dept Math, Kairouan, Tunisia
关键词
Spherical mean operator; windowed Fourier transform; inversion formulas; Heisenberg's type inequality; Donoho-Stark's uncertainty principles; Faris-Price's uncertainty principle; GABOR TRANSFORM; INEQUALITIES;
D O I
10.1142/S1793557123501590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study the windowed Fourier transform, called also the Gabor transform, associated with the spherical mean operator and we prove for this transform the reproducing inversion formulas. We also prove several versions of Heisenberg type inequalities, Donoho-Stark's uncertainty principles and finally Faris-Price's uncertainty principle for the previous transform.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Toeplitz Operators for Wavelet Transform Related to the Spherical Mean Operator
    Amri, Besma
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (04): : 849 - 872
  • [22] Toeplitz operators for Stockwell transform related to the spherical mean operator
    Hleili, Khaled
    Hleili, Manel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 1961 - 1991
  • [23] Uncertainty Principles for the Two-Sided Quaternion Windowed Quadratic-Phase Fourier Transform
    Bhat, Mohammad Younus
    Dar, Aamir Hamid
    Nurhidayat, Irfan
    Pinelas, Sandra
    SYMMETRY-BASEL, 2022, 14 (12):
  • [24] LOCALIZATION OPERATORS RELATED TO α-WINDOWED FOURIER TRANSFORM
    Catana, Viorel
    Flondor, Ioana-Maria
    Scumpu, Mihaela-Gratiela
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 11 - 22
  • [25] Uncertainty principles for the windowed Opdam-Cherednik transform
    Mondal, Shyam Swarup
    Poria, Anirudha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18861 - 18877
  • [26] Uncertainty principles for the windowed offset linear canonical transform
    Gao, Wen-Biao
    Li, Bing-Zhao
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
  • [27] IDEAL INVERSION FORMULAS FOR THE FOURIER-TRANSFORM
    WILSON, FJ
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (01) : 80 - 85
  • [28] Spherical mean transform of operator pairs
    Stankovic, Hranislav
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [29] UNCERTAINTY PRINCIPLE FOR THE SPHERICAL MEAN OPERATOR
    Daher, Radouan
    Khadari, Abdelmajid
    Omri, Slim
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (03): : 475 - 487
  • [30] Uncertainty principles for the generalized Fourier transform associated to a Dunkl-type operator
    Mejjaoli, Hatem
    APPLICABLE ANALYSIS, 2016, 95 (09) : 1930 - 1956