Spatial buffer-area assisted antiferroelectric-ferroelectric transition in NaNbO3

被引:1
|
作者
Hu, Tengfei [1 ,3 ,4 ]
Fu, Zhengqian [2 ,4 ]
Zhang, Linlin [2 ,4 ]
Ye, Jiaming [3 ]
Chen, Xuefeng [3 ]
Wang, Genshui [1 ,3 ]
Xu, Fangfang [2 ,4 ]
机构
[1] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Chem & Mat Sci, 1 Sublane Xiangshan, Hangzhou 310024, Peoples R China
[2] Chinese Acad Sci, Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Inorgan Funct Mat & Devices, Shanghai 200050, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, Anal & Testing Ctr Inorgan Mat, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Antiferroelectric; Spatial buffer-area; Phase transition; Energy storage; PHASE-TRANSITIONS; CERAMICS; DOMAINS;
D O I
10.1016/j.scriptamat.2023.115295
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lead-free antiferroelectric materials can be used in environmental-friendly energy applications and are receiving tremendous attention owing to their high energy-storage density, which is achieved through a phase transition between antiferroelectric and ferroelectric state. Here, by slowing down the antiferroelectric-ferroelectric tran-sition via controllable beam irradiation in a transmission electron microscope, we demonstrate that such a transition in NaNbO3 undergoes by means of forming a buffer-area (about 40-150 nm wide) at the on-going transition front. The spatial buffer-area approximately maintains its shape during moving and are character-ized to be the antiferroelectric phase but exhibits a gradual variation of lattice spacing along the [010] pro-ceeding direction of phase transition. With help of such buffer-area, the overall stress or barrier between the two phases could be considerably reduced compared to the direct change between the two structures. Therefore, our findings provide new insights for understanding the dynamical energy-storage process in antiferroelectric materials.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] SOFT MODE IN ANTI-FERROELECTRIC NANBO3
    DARLINGTON, CNW
    ACTA CRYSTALLOGRAPHICA SECTION A, 1978, 34 : S314 - S314
  • [22] Phase transition and ferroelectric properties of epitaxially strained KNbO3/NaNbO3 superlattice
    Li, Zhanfang
    Lue, Tianquan
    Cao, Wenwu
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (12)
  • [23] Antiferro-ferroelectric transition in the system (1−x)NaNbO3—xLiNbO3
    I. B. Pozdnyakova
    L. A. Reznichenko
    B. G. Gavrilyachenko
    Technical Physics Letters, 1999, 25 : 752 - 753
  • [24] Sintering and Characterization of a Transparent Ferroelectric NaNbO3 Ceramic
    Lin, X.
    Li, Z. -F.
    Shu, L. -F.
    JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2017, 8 (02): : 209 - 212
  • [25] Interband transitions in epitaxial ferroelectric films of NaNbO3
    Tyunina, M.
    Chvostova, D.
    Yao, L. D.
    Dejneka, A.
    Kocourek, T.
    Jelinek, M.
    van Dijken, S.
    PHYSICAL REVIEW B, 2015, 92 (10):
  • [26] MONODOMAIN STATE FORMATION IN ANTIFERROELECTRIC NANBO3 AND PBZRO3 CRYSTALS
    DEC, J
    FERROELECTRICS, 1989, 97 : 197 - 200
  • [27] Motion of phase boundary during antiferroelectric-ferroelectric transition in a PbZrO3-based ceramic
    Liu, Binzhi
    Tian, Xinchun
    Zhou, Lin
    Tan, Xiaoli
    PHYSICAL REVIEW MATERIALS, 2020, 4 (10):
  • [28] ANTIFERROELECTRIC-PARAELECTRIC PHASE-TRANSFORMATION IN NONSTOICHIOMETRIC NANBO3
    KUS, C
    BAK, W
    PTAK, WS
    SMIGA, W
    FERROELECTRICS, 1988, 81 : 1241 - 1244
  • [29] Pressure Induced Phase Transition in NaNbO3
    Mishra, S. K.
    Mittal, R.
    Chaplot, S. L.
    Hansen, Thomas
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 50 - 51
  • [30] High temperature Raman study of phase transitions in antiferroelectric NaNbO3
    Wang, XB
    Shen, ZX
    Hu, ZP
    Qin, L
    Tang, SH
    Kuok, MH
    JOURNAL OF MOLECULAR STRUCTURE, 1996, 385 (01) : 1 - 6