Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single-cell sequencing

被引:2
|
作者
Chen, Yuehua [1 ]
Zhou, Xiaomeng [1 ]
Ji, Linghua [1 ]
Zhao, Jun [1 ]
Xian, Hua [1 ]
Xu, Yunzhao [2 ]
Wang, Ziheng [3 ,4 ,6 ]
Ge, Wenliang [1 ,5 ,6 ]
机构
[1] Nantong Univ, Med Sch, Dept Pediat Surg, Affiliated Hosp, Nantong, Peoples R China
[2] Nantong Univ, Dept Obstet & Gynecol, Affiliated Hosp, Nantong, Peoples R China
[3] Nantong Univ, Dept Clin Biobank, Affiliated Hosp, Nantong, Peoples R China
[4] Univ Macau, Fac Hlth Sci, Ctr Precis Med Res & Training, Taipa, Macau, Peoples R China
[5] Nantong Univ, Sch Med, Dept Pediat Surg, Nantong, Peoples R China
[6] Nantong Univ, Med Sch, Dept Pediat Surg, Affiliated Hosp, Nantong 226001, Jiangsu, Peoples R China
来源
BIRTH DEFECTS RESEARCH | 2024年 / 116卷 / 03期
基金
中国国家自然科学基金;
关键词
cryptorchidism; machine learning; random forest model; RNA-sequencing; single-cell sequencing; BILATERAL CRYPTORCHIDISM; BOYS; TAB1;
D O I
10.1002/bdr2.2316
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundCryptorchidism is a condition in which one or both of a baby's testicles do not fully descend into the bottom of the scrotum. Newborns with cryptorchidism are at increased risk of developing infertility later in life. The aim of this study was to develop a novel diagnostic model for cryptorchidism and to identify new biomarkers associated with cryptorchidism.MethodsThe study data were obtained from RNA sequencing data of cryptorchid patients from Nantong University Hospital and the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to obtain differentially expressed genes (DEGs) between the control and cryptorchid groups. These DEGs were analyzed for their functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using GSEA software. Random Forest algorithm was used to screen central genes based on these DEGs. Neuralnet software package was used to develop artificial neural network models. Based on clinical data, receiver operating characteristic (ROC) was used to validate the models. Single-cell sequencing analysis was used for the pathogenesis of cryptorchidism.ResultsWe obtained a total of 525 important DEGs related to cryptorchidism, which are mainly associated with biological functions such as supramolecular complexes and microtubule cytoskeleton. Random forest approach screening obtained eight hub genes. A neural network based on the hub genes showed a 100% success rate of the model. Finally, single-cell sequencing analysis validated the hub genes.ConclusionWe developed a novel diagnostic model for cryptorchidism using artificial neural networks and validated its utility as an effective diagnostic tool.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Algorithmic advances in machine learning for single-cell expression analysis
    Oller-Moreno, Sergio
    Kloiber, Karin
    Machart, Pierre
    Bonn, Stefan
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 25 : 27 - 33
  • [22] Machine learning-based prediction for single-cell mechanics
    Nguyen, Danh
    Tao, Lei
    Ye, Huilin
    Li, Ying
    MECHANICS OF MATERIALS, 2023, 180
  • [23] Construction of a Prognostic Model for Mitochondria and Macrophage Polarization Correlation in Glioma Based on Single-Cell and Transcriptome Sequencing
    Chen, Pengyu
    Wang, Heping
    Zhang, Yufei
    Qu, Siyao
    Zhang, Yulian
    Yang, Yanbo
    Zhang, Chuanpeng
    He, Kun
    Dang, Hanhan
    Yang, Yang
    Li, Shaoyi
    Yu, Yanbing
    CNS NEUROSCIENCE & THERAPEUTICS, 2024, 30 (11)
  • [24] Joint learning dimension reduction and clustering of single-cell RNA-sequencing data
    Wu, Wenming
    Ma, Xiaoke
    BIOINFORMATICS, 2020, 36 (12) : 3825 - 3832
  • [25] Analysis of single-cell RNA sequencing data based on autoencoders
    Andrea Tangherloni
    Federico Ricciuti
    Daniela Besozzi
    Pietro Liò
    Ana Cvejic
    BMC Bioinformatics, 22
  • [26] Analysis of single-cell RNA sequencing data based on autoencoders
    Tangherloni, Andrea
    Ricciuti, Federico
    Besozzi, Daniela
    Lio, Pietro
    Cvejic, Ana
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [27] Machine learning and statistical methods for clustering single-cell RNA-sequencing data
    Petegrosso, Raphael
    Li, Zhuliu
    Kuang, Rui
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1209 - 1223
  • [28] Combining machine learning and single-cell sequencing to identify key immune genes in sepsis
    Wang, Hao
    Len, Linghan
    Hu, Li
    Hu, Yingchun
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning
    Zhang, Qunhui
    Guo, Yang
    Zhang, Benyin
    Liu, Hairui
    Peng, Yanfeng
    Wang, Di
    Zhang, Dejun
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [30] Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning
    Yong, Xi
    Kang, Tengyao
    Li, Mingzhu
    Li, Sixuan
    Yan, Xiang
    Li, Jiuxin
    Lin, Jie
    Lu, Bo
    Zheng, Jianghua
    Xu, Zhengmin
    Yang, Qin
    Li, Jingdong
    MAMMALIAN GENOME, 2025, 36 (01) : 183 - 199