Particle swarm optimization of Elman neural network applied to battery state of charge and state of health estimation

被引:14
|
作者
Miranda, Matheus H. R. [1 ]
Silva, Fabricio L. [1 ]
Lourenco, Maria A. M. [1 ]
Eckert, Jony J. [2 ]
Silva, Ludmila C. A. [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Mech Engn, Integrated Syst Lab, Campinas, SP, Brazil
[2] Univ Fed Ceara, Mech Engn Dept, Engines Lab, Fortaleza, Brazil
基金
巴西圣保罗研究基金会;
关键词
Artificial neural networks; Lithium-ion batteries; State of charge; State of health; Multi-objective optimization; LI-ION BATTERIES; ONLINE STATE; PARAMETERS; CELLS; MODEL;
D O I
10.1016/j.energy.2023.129503
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries have emerged as an energy storage solution for electrified vehicles. A Battery Management System (BMS) is critical for efficient and reliable system operation, in which State of Charge (SoC) estimation and State of Health (SoH) monitoring are of major importance to ensure optimal energy management in battery vehicles for increased autonomy and battery life. This paper presents a neural network with Elman architecture trained for a lithium-ion cell, aiming at SoC and SoH estimation. The multi-objective optimization approach based on the particle swarm algorithm is used for the training in order to lower the root mean square error in calculating the SoC and SoH. For such purposes, the neural network characteristics are optimized, such as the number of hidden layers, the number of neurons in each hidden layer, the activation functions, the bias value, and the weights of the inputs and outputs. The best trade-off solution has an error of 2.56% in the average SoC estimate and 0.003% in the average SoH estimate.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Battery State of Charge and State of Health Estimation for VRLA Batteries Using Kalman Filter and Neural Networks
    Sedighfar, Amin
    Moniri, M. R.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC ENGINEERING (ICEEE), 2018, : 41 - 46
  • [32] MAPPING OF ELECTROCHEMISTRY AND NEURAL NETWORK MODEL APPLIED IN STATE OF CHARGE ESTIMATION FOR LEAD ACID BATTERY USED IN ELECTRIC VEHICLE
    Kaloko, Bambang Sri
    Soebagio
    Purnomo, Mauridhi H.
    INDONESIAN JOURNAL OF CHEMISTRY, 2011, 11 (02) : 140 - 147
  • [33] Quantum Neural Network for State of Charge Estimation
    Mangunkusumo, Kevin Gausultan Hadith
    Lian, K. L.
    Wijaya, F. D.
    Chang, Y. -R.
    Lee, Y. D.
    Ho, Y. H.
    2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2014, : 331 - 335
  • [34] Joint Estimation of State of Charge and State of Health of Lithium Ion Battery
    Chen, Peng
    Jin, Xin
    Han, Xue Feng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [35] A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Fahmy, Youssef
    Emadi, Ali
    ENERGIES, 2022, 15 (03)
  • [36] A new neural network model for the state-of-charge estimation in the battery degradation process
    Kang, LiuWang
    Zhao, Xuan
    Ma, Jian
    APPLIED ENERGY, 2014, 121 : 20 - 27
  • [37] State of Charge Estimation of Power Battery Using Improved Back Propagation Neural Network
    Zhang, Chuan-Wei
    Chen, Shang-Rui
    Gao, Huai-Bin
    Xu, Ke-Jun
    Yang, Meng-Yue
    BATTERIES-BASEL, 2018, 4 (04):
  • [38] A merged fuzzy neural network and its applications in battery state-of-charge estimation
    Li, I-Hsum
    Wang, Wei-Yen
    Su, Shun-Feng
    Lee, Yuang-Shung
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (03) : 697 - 708
  • [39] State of Charge Estimation of Battery in Low Power States Based on Chaotic Neural Network
    Li, Jianhua
    Liu, Mingsheng
    Wen, Hongnian
    Xu, Aixue
    2ND INTERNATIONAL CONFERENCE ON GREEN ENERGY AND SUSTAINABLE DEVELOPMENT (GESD 2019), 2019, 2122
  • [40] Battery state-of-charge estimation based on chaos immune evolutionary neural network
    Cheng, Bo
    Han, Lin
    Guo, Zhen-Yu
    Wang, Jun-Ping
    Cao, Bing-Gang
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (11): : 2889 - 2892