Thermal analysis and optimization of metal foam PCM-based heat sink for thermal management of electronic devices

被引:44
|
作者
Hu, Xusheng [1 ]
Gong, Xiaolu [2 ]
Zhu, Feng [3 ]
Xing, Xiaodong [1 ]
Li, Zhongru [1 ]
Zhang, Xiaoxia [1 ]
机构
[1] Harbin Engn Univ, Coll Mech & Elect Engn, Harbin 150001, Peoples R China
[2] Univ Technol Troyes, LASMIS, 12 Rue Marie Curie, F-10004 Troyes, France
[3] Beijing Natl New Energy Vehicle Technol Innovat Ct, Beijing 100174, Peoples R China
关键词
Heat sink; Phase change material; Metal foam; Thermal performance; Optimization; PHASE-CHANGE MATERIAL; PERFORMANCE; POROSITY; CONVECTION; STORAGE; SCALE; FLUID;
D O I
10.1016/j.renene.2023.05.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Efficient thermal management in electric devices is highly essential for ensuring the reliability and durability of electronics. This study aims to investigate the thermal performance and optimization of metal foam PCM-based heat sink for thermal management units. Different design parameters, such as PCM types (RT31, RT42, and RT55), metal foam porosities (85%, 90%, and 95%), and metal foam materials, are studied to determine heat sink optimal parameters, considering various critical temperatures: 40 degrees C, 50 degrees C, 60 degrees C and 70 degrees C. The volume -averaged method is used to simulate the heat transfer, phase change, and fluid flow within the heat sink unit. Heat transfer between PCM and metal foam is established using a thermal non-equilibrium model. The results show that the usage of metal foam is conducive to the thermal performance enhancement of heat sinks. Among the three parameters, PCM types show a considerable effect on thermal performance of heat sinks, e.g., the maximum operation time of heat sinks with RT31 is about 5 times that of heat sinks with RT55 for the critical temperature of 40 degrees C. Among all the cases, heat sinks using RT31 and aluminum foam perform optimally, which can achieve the optimal design of heat sinks.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 50 条
  • [31] Thermal performance analysis of bi-porous metal foam heat sink
    Li, Yongtong
    Gong, Liang
    Xu, Minghai
    Joshi, Yogendra
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 2, 2016,
  • [32] Numerical investigation of a PCM-based heat sink with internal fins
    Shatikian, V
    Ziskind, G
    Letan, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (17) : 3689 - 3706
  • [33] A parametric investigation of a PCM-based pin fin heat sink
    Pakrouh, R.
    Hosseini, M. J.
    Ranjbar, A. A.
    MECHANICAL SCIENCES, 2015, 6 (01) : 65 - 73
  • [34] Thermal Modeling and Analysis of Metal Foam Heat Sink with Thermal Equilibrium and Non-Equilibrium Models
    Li, Yongtong
    Gong, Liang
    Lu, Hui
    Zhang, Dexin
    Ding, Bin
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 123 (02): : 895 - 912
  • [35] Analysis of transient thermal management characteristics of PCM with an embedded carbon fiber heat sink
    Fleischer, Amy S.
    Weinstein, Randy D.
    Kopec, Thomas
    2006 PROCEEDINGS 10TH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONICS SYSTEMS, VOLS 1 AND 2, 2006, : 1265 - +
  • [36] EXPERIMENTAL INVESTIGATIONS ON THERMAL PERFORMANCE OF PCM BASED HEAT SINK FOR PASSIVE COOLING OF ELECTRONIC COMPONENTS
    Kothari, Rohit
    Mahalkar, Pawan
    Sahu, Santosh K.
    Kundaiwal, Shailesh I.
    PROCEEDINGS OF THE ASME 16TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2018, 2016,
  • [37] Advanced parametric optimization of a nanofluid augmented PCM-based latent heat thermal energy storage system
    Bhat, Gowhar Shafi
    Shafi, Iqra
    Ahmad, Mukhtar
    Qayoum, Adnan
    Saleem, Sheikh Shahid
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2025,
  • [38] Thermal analysis of PCM-based hybrid micro-channel heat sinks: A numerical study
    Ramesh, Korasikha Naga
    Sharma, Thopudurthi Karthikeya
    JOURNAL OF THERMAL ENGINEERING, 2023, 9 (04): : 1015 - 1025
  • [39] Numerical thermal analysis and structural optimization of cascaded PCM heat sinks for thermal management of electronics
    Chang, Shoujin
    Liu, Bing
    Gao, Xiaoying
    Li, Xuan
    Meng, Yingze
    Hu, Haitao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [40] Parametric Study on Thermal Performance of PCM Heat Sink Used for Electronic Cooling
    Gharbi, Salma
    Harmand, Souad
    Ben Jabrallah, Sadok
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 243 - 256