Investigating machine learning models in predicting lake water quality parameters as a 3-year moving average

被引:1
|
作者
Gorgan-Mohammadi, Faezeh [1 ]
Rajaee, Taher [1 ]
Zounemat-Kermani, Mohammad [2 ]
机构
[1] Univ Qom, Dept Civil Engn, Qom, Iran
[2] Shahid Bahonar Univ Kerman, Dept Water Engn, Kerman, Iran
关键词
Machine learning; Data mining; Decision tree; Neural network; Water quality; Hydro chemical parameters; CLASSIFICATION MODELS; TREE; PHOSPHORUS; RIVER;
D O I
10.1007/s11356-023-26830-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lake water quality plays a vital role in the lake ecosystem, including biotic (for living creatures, such as plants, animals, and micro-organisms) and abiotic interactions. In this research, various types of machine learning (ML) methodologies, such as classification and regression tree (CART), chi-squared automatic interaction detector (CHAID), C5 tree, quick, unbiased, and efficient statistical tree (QUEST), along with multilayer perceptron (MLP) neural network, and radial basis function (RBF) neural network, are employed to predict the concentration of water quality parameters (P, EC, TDS, pH, DO, NH3, SO4, and theta). Lake Erie is situated at the international border of the USA and Canada. The C5 tree and QUEST tree are used to classify data and predict the number of groups, while the other methods are used to predict the concentration of water quality parameters in the form of a 3-year moving average. The greater matching between the observed and predicted data of dissolved oxygen (NSE = 0.978, bias = 0.126) shows that the CART decision tree has higher accuracy in correctly detecting the concentration of this parameter. The C5 tree could identify 33 groups correctly out of 36 total groups, which shows better accuracy for the C5 tree in classifying the data for this parameter.
引用
收藏
页码:63839 / 63863
页数:25
相关论文
共 50 条
  • [21] Using Machine Learning Models for Predicting the Water Quality Index in the La Buong River, Vietnam
    Khoi, Dao Nguyen
    Quan, Nguyen Trong
    Linh, Do Quang
    Nhi, Pham Thi Thao
    Thuy, Nguyen Thi Diem
    WATER, 2022, 14 (10)
  • [22] Machine learning and statistical models for predicting indoor air quality
    Wei, Wenjuan
    Ramalho, Olivier
    Malingre, Laeticia
    Sivanantham, Sutharsini
    Little, John C.
    Mandin, Corinne
    INDOOR AIR, 2019, 29 (05) : 704 - 726
  • [23] Predictive Modeling of Urban Lake Water Quality Using Machine Learning: A 20-Year Study
    Miller, Tymoteusz
    Durlik, Irmina
    Adrianna, Krzeminska
    Kisiel, Anna
    Cembrowska-Lech, Danuta
    Spychalski, Ireneusz
    Tunski, Tomasz
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [24] Multiple Linear Regression and Machine Learning for Predicting the Drinking Water Quality Index in Al-Seine Lake
    Jafar, Raed
    Awad, Adel
    Hatem, Iyad
    Jafar, Kamel
    Awad, Edmond
    Shahrour, Isam
    SMART CITIES, 2023, 6 (05): : 2807 - 2827
  • [25] Machine learning model for predicting 1-year and 3-year all-cause mortality in ischemic heart failure patients
    Cai, Anping
    Chen, Rui
    Pang, Chengcheng
    Liu, Hui
    Zhou, Yingling
    Chen, Jiyan
    Li, Liwen
    POSTGRADUATE MEDICINE, 2022, 134 (08) : 810 - 819
  • [26] Predicting Aquaculture Water Quality Using Machine Learning Approaches
    Li, Tingting
    Lu, Jian
    Wu, Jun
    Zhang, Zhenhua
    Chen, Liwei
    WATER, 2022, 14 (18)
  • [27] Application of machine learning methods on predicting irrigation water quality
    Lin Y.P.
    Lien W.Y.
    Chen H.Y.
    He J.H.
    Chou C.F.
    Taiwan Water Conservancy, 2020, 68 (01): : 1 - 14
  • [29] Predicting 3-year all-cause mortality in rectal cancer patients based on body composition and machine learning
    Li, Xiangyong
    Zhou, Zeyang
    Zhang, Xiaoyang
    Cheng, Xinmeng
    Xing, Chungen
    Wu, Yong
    FRONTIERS IN NUTRITION, 2025, 12
  • [30] Comparative analysis of machine learning models for predicting water quality index in Dhaka's rivers of Bangladesh
    Nishat, Mosaraf Hosan
    Khan, Md. Habibur Rahman Bejoy
    Ahmed, Tahmeed
    Hossain, Syed Nahin
    Ahsan, Amimul
    El-Sergany, M. M.
    Shafiquzzaman, Md.
    Imteaz, Monzur Alam
    Alresheedi, Mohammad T.
    ENVIRONMENTAL SCIENCES EUROPE, 2025, 37 (01)