The spectrum of local random Hamiltonians

被引:1
|
作者
Collins, B. [1 ]
Yin, Z. [2 ]
Zhao, L. [3 ]
Zhong, P. [4 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
[2] Cent South Univ, Sch Math & Stat, Changsha, Peoples R China
[3] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[4] Univ Wyoming, Dept Math & Stat, Laramie, WY USA
关键词
spectrums; random; Hamiltonians; RANDOM MATRICES; 2ND-ORDER FREENESS; FLUCTUATIONS; UNITARY; LIMIT; HAAR;
D O I
10.1088/1751-8121/acb4c8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectrum of a local random Hamiltonian can be represented generically by the so-called epsilon-free convolution of the probability distributions of its local terms. We establish an isomorphism between the set of epsilon-noncrossing partitions and permutations to study its spectrum. Moreover, we derive some lower and upper bounds for the maximal eigenvalue of the Hamiltonian.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] On local Hamiltonians and dissipative systems
    Castagnino, M.
    Gadella, M.
    Lara, L. P.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 542 - 551
  • [22] Extremal eigenvalues of local Hamiltonians
    Harrow, Aram W.
    Montanaro, Ashley
    QUANTUM, 2017, 1
  • [24] Local separatrices for Hamiltonians with symmetries
    Wiesenfeld, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (12): : L143 - L149
  • [25] Generic Local Hamiltonians are Gapless
    Movassagh, Ramis
    PHYSICAL REVIEW LETTERS, 2017, 119 (22)
  • [26] Sparse Random Hamiltonians Are Quantumly Easy
    Chen, Chi -Fang
    Dalzell, Alexander M.
    Berta, Mario
    Brandao, Fernando G. S. L.
    Tropp, Joel A.
    PHYSICAL REVIEW X, 2024, 14 (01)
  • [27] Dynamical delocalization in random Landau Hamiltonians
    Germinet, Francois
    Klein, Abel
    Schenker, Jeffrey H.
    ANNALS OF MATHEMATICS, 2007, 166 (01) : 215 - 244
  • [28] Landau Hamiltonians with unbounded random potentials
    Barbaroux, JM
    Combes, JM
    Hislop, PD
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (04) : 355 - 369
  • [29] Generalized seniority from random Hamiltonians
    Johnson, CW
    Bertsch, GF
    Dean, DJ
    Talmi, I
    PHYSICAL REVIEW C, 2000, 61 (01): : 6
  • [30] Landau Hamiltonians with Unbounded Random Potentials
    J. M. Barbaroux
    J. M. Combes
    P. D. Hislop
    Letters in Mathematical Physics, 1997, 40 : 355 - 369