Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras

被引:2
|
作者
Bai, Chengming [1 ,2 ]
Guo, Li [3 ]
Liu, Guilai [1 ,2 ]
Ma, Tianshui [4 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rota-Baxter operator; Classical Yang-Baxter equation; Pre-Lie algebra; Bialgebra; Special L-dendriform algebra;
D O I
10.1007/s10468-024-10261-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document}-operators.
引用
收藏
页码:1347 / 1372
页数:26
相关论文
共 50 条
  • [21] Leibniz Bialgebras, Classical Yang–Baxter Equations and Dynamical Systems
    Adel Rezaei-Aghdam
    Leila Sedghi-Ghadim
    Ghorbanali Haghighatdoost
    Advances in Applied Clifford Algebras, 2021, 31
  • [22] {σ, τ}-Rota-Baxter Operators, Infinitesimal Hom-bialgebras and the Associative (Bi)Hom-Yang-Baxter Equation
    Liu, Ling
    Makhlouf, Abdenacer
    Menini, Claudia
    Panaite, Florin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 355 - 372
  • [23] Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    JOURNAL OF ALGEBRA, 2023, 622 : 587 - 613
  • [24] Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation
    Bai, Chengming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 221 - 260
  • [25] Rota-Baxter operators on sl(2, C) and solutions of the classical Yang-Baxter equation
    Pei, Jun
    Bai, Chengming
    Guo, Li
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [26] Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras
    Benali, Karima
    Chtioui, Taoufik
    Hajjaji, Atef
    Mabrouk, Sami
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02): : 211 - 233
  • [27] ROTA-BAXTER OPERATORS AND NON-SKEW-SYMMETRIC SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION ON QUADRATIC LIE ALGEBRAS
    Goncharov, M. P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 2098 - 2109
  • [28] Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras
    Wang, You
    Bai, Chengming
    Liu, Jiefeng
    Sheng, Yunhe
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [29] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [30] Long Bialgebras,Dimodule Algebras and Quantum Yang-Baxter Modules over Long Bialgebras
    Liang Yun ZHANG College of Science
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (04) : 1261 - 1270