On Completely Mixed Games

被引:0
|
作者
Thiruvankatachari, Parthasarathy [1 ]
Gomatam, Ravindran [2 ]
Kumar, Sunil [2 ]
机构
[1] Chennai Math Inst, Chennai 603103, India
[2] Indian Stat Inst, Chennai 600029, India
关键词
Q matrices; Completely mixed games; Symmetric games; Skew-symmetric matrices;
D O I
10.1007/s10957-024-02395-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A matrix game is considered completely mixed if all the optimal pairs of strategies in the game are completely mixed. In this paper, we establish that a matrix game A, with a value of zero, is completely mixed if and only if the value of the game associated with A+Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A +D_i $$\end{document} is positive for all i, where Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_i$$\end{document} represents a diagonal matrix where ith diagonal entry is 1 and else 0. Additionally, we address Kaplansky's question from 1945 regarding whether an odd-ordered symmetric game can be completely mixed, and provide characterizations for odd-ordered skew-symmetric matrices to be completely mixed. Moreover, we demonstrate that if A is an almost skew-symmetric matrix and the game associated with A has value positive, then A+Di is an element of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A +D_i \in Q$$\end{document} for all i, where Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_i$$\end{document} is a diagonal matrix whose ith diagonal entry is 1 and else 0. Skew-symmetric matrices and almost skew-symmetric matrices with value positive fall under the class of P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_0$$\end{document} and Q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_0$$\end{document}, making them amenable to processing through Lemke's algorithm.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [1] On Completely Mixed Games
    Parthasarathy Thiruvankatachari
    Ravindran Gomatam
    Sunil Kumar
    Journal of Optimization Theory and Applications, 2024, 201 : 313 - 322
  • [2] Completely mixed bimatrix games
    T Parthasarathy
    Vasudha Sharma
    A R Sricharan
    Proceedings - Mathematical Sciences, 2020, 130
  • [3] Completely mixed bimatrix games
    Parthasarathy, T.
    Sharma, Vasudha
    Sricharan, A. R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [4] RECOGNITION OF COMPLETELY MIXED GAMES
    GOLDMAN, AJ
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1963, 67 (01): : 23 - 29
  • [5] On Completely Mixed Stochastic Games
    Das P.
    Parthasarathy T.
    Ravindran G.
    Operations Research Forum, 3 (4)
  • [6] COMPLETELY MIXED STRATEGIES IN BIMATRIX GAMES
    RAGHAVAN, TE
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (OCT): : 709 - &
  • [7] COMPLETELY MIXED STRATEGIES IN BIMATRIX GAMES
    HEUER, GA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (SEP): : 17 - 20
  • [8] Completely Mixed Discounted Bistochastic Games
    Parthasarathy, T.
    Ravindran, G.
    Sricharan, A. R.
    INTERNATIONAL GAME THEORY REVIEW, 2023, 25 (03)
  • [9] COMPLETELY MIXED STRATEGIES IN BIMATRIX GAMES
    HEUER, GA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A549 - A549
  • [10] ON WEAKLY COMPLETELY MIXED BIMATRIX GAMES
    JURG, AP
    JANSEN, MJM
    PARTHASARATHY, T
    TIJS, SH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 141 : 61 - 74