An Approach to Identifying Aspects of Positive Pilot Behavior within the Aviation Safety Reporting System

被引:0
|
作者
Matthews, Bryan [1 ,2 ]
Barshi, Immanuel [2 ]
Feldman, Jolene [2 ]
机构
[1] KBR Inc, Houston, TX 77002 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
来源
2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC | 2023年
关键词
NLP; ASRS; Aviation Safety; Human Factors; Text Mining;
D O I
10.1109/DASC58513.2023.10311185
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The National Airspace System (NAS) is constantly evolving as air traffic continues to ramp up to pre-pandemic numbers and projected to grow to unprecedented levels in the coming years. As well as increasing demand to the current system, Emerging operations such as Unmanned Autonomous Systems are also expected to add to complexity to the airspace. To address these issues, the industry and government agencies supporting the NAS will need to rely upon additional automation and new technologies to address future operational requirements, while continuing to be a world-leading safe transportation system. As these new technologies are implemented, the system continues to rely on human pilots and controllers in the loop to monitor the system and intervene in situations the automation cannot handle. The goal of proactively addressing safety is of foremost concern to ensure passenger well-being. The industry has implemented various Safety Management Systems to identify safety risks and proactively address them before they result in a serious incident or accident. One such program is NASA's Aviation Safety Reporting System (ASRS). ASRS is a long-established system where pilots and controllers voluntarily and anonymously report safety incidents they experienced and observed during line operations by providing rich text narratives describing the events, the environment, and conditions leading to the safety event of concern. These narratives provide insight and context around events of interest and can be used to identify emerging problems. These reports can also trigger investigations within Flight Operational Quality Assurance or Flight Data Monitoring programs. However, this process typically focuses on the adverse events and the unsafe aspects of the operations surrounding the reported or detected events. This perspective of investigating factors that went wrong around an adverse event is commonly referred to as Safety I. Alternatively, characterizing successful actions that operators perform every day under varying conditions that keep the system within safe operating bounds is a concept referred to as Safety II. The benefit of the Safety II view is that its scope is much larger than that of Safety I since a vast majority of the operations result in successful flights. Many of the successful techniques used to manage operational threats are not documented in standard operating procedures or taught during training. They are typically acquired over time by working with experienced pilots during line operations or in many cases after experiencing a problem for the first time and reacting to it in situ, drawing from years of experience to manage the threat. In an attempt to quantify these positive actions, we are proposing an approach to extract key behaviors within ASRS reports that can support the Safety II concept. Our analysis assumes that ASRS reports contain some descriptions of corrective actions that operators performed to prevent a situation from becoming an accident. Leveraging recent advances in Natural Language Process (NLP) modeling, we have developed an approach to extract positive sentiment from reports, embed these positive statements in a vector space where they can be numerically analyzed, and clustering these statements into similar contextual categories. From these contextualized categories we can attempt to summarize and distill aspects of the positive behavior. The goal is to identify categories of behavior that describe consistent operator techniques that supports the Safety II concept. With this information, airlines may enable learning from these positive actions, or address procedures that need to be changed. These insights can provide a lens into what is "going right" in the operations that may otherwise not be known widely within the community. It is envisioned that this approach can be extended to other narrative programs such as Line Operation Safety Audit or Learning Improvement Team reports where similar observed behavior can be analyzed to extract positive actions and inform the overall operations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Prospective surveillance pilot of rivaroxaban safety within the US Food and Drug Administration Sentinel System
    Chrischilles, Elizabeth A.
    Gagne, Joshua J.
    Fireman, Bruce
    Nelson, Jennifer
    Toh, Sengwee
    Shoaibi, Azadeh
    Reichman, Marsha E.
    Wang, Shirley
    Nguyen, Michael
    Zhang, Rongmei
    Izem, Rima
    Goulding, Margie R.
    Southworth, Mary Ross
    Graham, David J.
    Fuller, Candace
    Katcoff, Hannah
    Woodworth, Tiffany
    Rogers, Catherine
    Saliga, Ryan
    Lin, Nancy D.
    McMahill-Walraven, Cheryl N.
    Nair, Vinit P.
    Haynes, Kevin
    Carnahan, Ryan M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 (03) : 263 - 271
  • [42] Identifying Medications Underlying Communication Atypicalities in Psychotic and Affective Disorders : A Pharmacovigilance Study Within the FDA Adverse Event Reporting System
    Fusaroli, Michele
    Simonsen, Arndis
    Borrie, Stephanie A.
    Low, Daniel M.
    Parola, Alberto
    Raschi, Emanuel
    Poluzzi, Elisabetta
    Fusaroli, Riccardo
    JOURNAL OF SPEECH LANGUAGE AND HEARING RESEARCH, 2023, 66 (09): : 3242 - 3259
  • [43] Identifying Risk Factors Associated with Diabetic Foot Wounds Outcomes within a Safety-Net Hospital System
    Gunawan, Felona
    Johnny, Blessing
    Gunasekaran, Uma
    DIABETES, 2023, 72
  • [44] Identifying Corridor-Level Safety Improvements for Urban and Suburban Arterials in Florida Within a Safe System Framework
    Mccombs, John
    Al-Deek, Haitham
    Sandt, Adrian
    Uddin, Nizam
    Carrick, Grady
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (10) : 693 - 705
  • [45] SAFETY ASSESSMENT OF NIRMATRELVIR-RITONAVIR IN THE FDA ADVERSE EVENT REPORTING SYSTEM: A DATA MINING APPROACH
    Teng, C.
    Lu, K. Z.
    VALUE IN HEALTH, 2024, 27 (06) : S155 - S155
  • [46] Metacognition for artificial intelligence system safety-An approach to safe and desired behavior
    Johnson, Bonnie
    SAFETY SCIENCE, 2022, 151
  • [47] Identifying and Shifting Disempowering Paradigms for Families of Children With Disability Through a System Informed Positive Psychology Approach
    Mahmic, Sylvana
    Kern, Margaret L.
    Janson, Annick
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [48] Commuter Train Passenger Safety Model Using Positive Behavior Approach: The Case Study in Suburban Area
    Suryanto, D. A.
    Adisasmita, S. A.
    Hamid, S.
    Hustim, M.
    4TH INTERNATIONAL CONFERENCE ON CIVIL AND ENVIRONMENTAL ENGINEERING FOR SUSTAINABILITY (ICONCEES 2017), 2018, 140
  • [49] Identifying best Practices in interstage care: using a positive deviance approach within the National Pediatric Cardiology Quality Improvement Collaborative
    Bates, Katherine E.
    Yu, Sunkyung
    Mangeot, Colleen
    Shea, Judy A.
    Brown, David W.
    Uzark, Karen
    CARDIOLOGY IN THE YOUNG, 2019, 29 (03) : 398 - 407
  • [50] Erratic behavior of nitric oxide within the immune system: illustrative review of conflicting data and their immunopharmacological aspects
    Zidek, Z
    Masek, K
    INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY, 1998, 20 (07): : 319 - 343