Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force

被引:32
|
作者
Tian, Haigang [1 ]
Shan, Xiaobiao [2 ]
Li, Xia [1 ]
Wang, Junlei [1 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450000, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Airfoil -based flutter; Magnetic coupled; Piezoelectric energy harvester; Enhanced performance; LIMIT-CYCLE OSCILLATIONS; INDUCED VIBRATION; WIND ENERGY; PERFORMANCE; CYLINDER; WAKE;
D O I
10.1016/j.apenergy.2023.120979
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a novel magnetic coupled airfoil-based flutter piezoelectric energy harvester, for decreasing the critical velocity, broadening the working bandwidth, and achieving more efficient harvesting performance at lower airflow velocity. The conceptual designing of the harvester system via coupling magnetic force is first conducted, the mathematical and simulation models of the fluid-structure-electric-magnetic coupled fields are then established, and the experimental prototypes are finally fabricated. The influences of the structural parameters of the harvester system on the vibration response and output performance are fully studied. The results show that the magnetic repulsion force decreases the equivalent stiffness of the harvester system and makes it easy to couple plunge-pitch motions. A decrease in the magnet spacing distances leads to decreasing the critical velocity and improving the output performance. Compared with the magnetic spacing distance of 25 mm, the critical velocity with the magnetic spacing distance of 17 mm decreases by 70%, and the enhancement ratio of output power increases by 50% at 13.8 m/s. The flow field demonstrates that the alternating pressure difference drives the harvester system to take place two DOF plunge-pitch motions. The experimental results are in good agreement with the theoretical values, which verified the established mathematical model. The designed magnetic coupled airfoil-based flutter harvester system achieves a larger vibration response and better harvesting performance at lower airflow velocity. This work provides essential foundations for achieving better harvesting performance via coupling magnetic force.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Broadband power generation of piezoelectric vibration energy harvester with magnetic coupling
    Jiang, Junxiang
    Liu, Shaogang
    Zhao, Dan
    Feng, Lifeng
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (15) : 2272 - 2282
  • [32] Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter
    Eugeni, Marco
    Elahi, Hassan
    Fune, Federico
    Lampani, Luca
    Mastroddi, Franco
    Romano, Giovanni Paolo
    Gaudenzi, Paolo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 97
  • [33] A Magnetic/Piezoelectric-Based Thermal Energy Harvester
    Chung, Tien-Kan
    Shukla, Ujjwal
    Tseng, Chia-Yuan
    Chen, Chin-Chung
    Wang, Chieh-Min
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2013, 2013, 8688
  • [34] A Wind Energy Harvester Based on Piezoelectric Magnetic Compound
    He, Lipeng
    Gu, Xiangfeng
    Wang, Shuangjian
    Liu, Xuejin
    Hu, Renhui
    Cheng, Guangming
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (19):
  • [35] Based on the centrifugal force and the coupling of the magnetic linkage effect broadband rotational energy harvester
    Feng, Linqiang
    He, Lipeng
    Wang, Chensheng
    Yang, Jingwei
    Li, Jing
    Yang, Bowen
    RENEWABLE ENERGY, 2025, 244
  • [36] A lever-type piezoelectric wave energy harvester based on magnetic coupling and inertial vibration
    Liu, Renwen
    Wang, Hongxin
    Sun, Lei
    Li, Xiaotao
    He, Lipeng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 62
  • [37] Modeling and experimental investigation of asymmetric distance with magnetic coupling based on galloping piezoelectric energy harvester
    Zhang, Huirong
    Zhang, Leian
    Wang, Yuanbo
    Yang, Xiaohui
    Song, Rujun
    Sui, Wentao
    SMART MATERIALS AND STRUCTURES, 2022, 31 (06)
  • [38] Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling
    Shi, Rui
    Chen, Jiawei
    Ma, Tianbing
    Li, Changpeng
    Zhang, Wenjie
    Ye, Dongdong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (06):
  • [39] An in-plane omnidirectional flutter piezoelectric wind energy harvester
    Li, Shen
    Feng, Zhiqiang
    He, Xuefeng
    Ye, Yizhou
    Li, Jinghua
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [40] A novel piezoelectric energy harvester of noncontact magnetic force for a vehicle suspension system
    Zhao, Zhen
    Zhang, Baifu
    Li, Yongxin
    Bao, Chunjiang
    Wang, Tie
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (03) : 1133 - 1147