PyCIL: a Python']Python toolbox for class-incremental learning

被引:21
|
作者
Zhou, Da-Wei [1 ]
Wang, Fu-Yun [1 ]
Ye, Han-Jia [1 ]
Zhan, De-Chuan [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1007/s11432-022-3600-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conclusion We have presented PyCIL, a classincremental learning toolbox written in Python. It contains implementations of a number of founding studies of CIL, but also provides current state-of-the-art algorithms that can be used to conduct novel fundamental research. Code consistency makes it an easy tool for research purposes, teaching, and industrial applications.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] PyOD: A Python']Python Toolbox for Scalable Outlier Detection
    Zhao, Yue
    Nasrullah, Zain
    Li, Zheng
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [22] Timor Python']Python: A Toolbox for Industrial Modular Robotics
    Kulz, Jonathan
    Mayer, Matthias
    Althoff, Matthias
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 424 - 431
  • [23] SCoT: a Python']Python toolbox for EEG source connectivity
    Billinger, Martin
    Brunner, Clemens
    Mueller-Putz, Gernot R.
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [24] Toolbox of image processing using the python']python language
    Silva, AG
    Lotufo, RD
    Machado, RC
    Saúde, AV
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 1049 - 1052
  • [25] Natter: A Python']Python Natural Image Statistics Toolbox
    Sinz, Fabian H.
    Lies, Joern-Philipp
    Gerwinn, Sebastian
    Bethge, Matthias
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (05): : 1 - 34
  • [26] bandicoot: a Python']Python Toolbox for Mobile Phone Metadata
    de Montjoye, Yves-Alexandre
    Rocher, Luc
    Pentland, Alex 'Sandy'
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [27] pyMechOpt: A Python']Python toolbox for optimizing of reaction mechanisms
    Di, Sihan
    Yu, Nanjia
    Han, Shutao
    He, Haodong
    SOFTWAREX, 2025, 29
  • [28] Is Class-Incremental Enough for Continual Learning?
    Cossu, Andrea
    Graffieti, Gabriele
    Pellegrini, Lorenzo
    Maltoni, Davide
    Bacciu, Davide
    Carta, Antonio
    Lomonaco, Vincenzo
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [29] Deep Learning for Class-Incremental Learning: A Survey
    Zhou D.-W.
    Wang F.-Y.
    Ye H.-J.
    Zhan D.-C.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (08): : 1577 - 1605
  • [30] AdvisIL - A Class-Incremental Learning Advisor
    Feillet, Eva
    Petit, Gregoire
    Popescu, Adrian
    Reyboz, Marina
    Hudelot, Celine
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2399 - 2408