Numerical simulation of the performance of GRS walls considering freeze-thaw cycles

被引:2
|
作者
Ding, L. Q. [1 ]
Cui, F. L. [1 ]
Xiao, C. Z. [1 ]
机构
[1] Hebei Univ Technol, Sch Civil & Transportat Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Geosynthetics; GRS walls; Freeze-thaw cycles; Deformation; Hysteresis; REINFORCED RETAINING WALLS; FROST HEAVE; BRIDGE ABUTMENTS; CASE-HISTORY; DATA-BASE; TEMPERATURE; MODEL; FAILURE; RECOMMENDATIONS; MECHANISMS;
D O I
10.1680/jgein.22.00368
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In practice, little attention has been paid directly to freeze-thaw (FT) cycles during the design and analysis of geogrid-reinforced soil (GRS) walls due to a lack of relevant literature. This study investigates the pavement vertical deformation (s), panel lateral deformation (d), lateral earth pressure (sigma(h)), and geogrid strain (epsilon) of a field GRS wall using an ABAQUS-based numerical model considering variations of the recorded five-year ambient temperature (T-R). Numerical results show that the s distribution follows a convex shape instead of the initial concave shape after FT cycles and can be divided into high, transition, and stable deformation zones. FT action alters both location and amplitude of the maximum d within the first two cycles, making the d distribution evolve from a J-shaped curve into an S-shaped one. During freezing, the developments of s and d are coordinated and can be described using a unified model; sigma(h) is larger than the Rankine active earth pressure; epsilon state depends on the interplay of two factors resulting from d and frost heave force. Furthermore, the hysteresis of s, d, sigma(h), and epsilon with T-R was discussed and several beneficial suggestions were proposed for GRS walls to avoid such FT destruction.
引用
收藏
页码:296 / 313
页数:18
相关论文
共 50 条
  • [41] Experimental study on seismic behavior of recycled concrete brick walls under freeze-thaw cycles
    Zheng, Shansuo
    Shang, Xiaoyu
    Zhang, Kui
    Liang, Xianfeng
    Ma, Delong
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2015, 36 (03): : 64 - 70
  • [42] Freeze-thaw damage evaluation and model creation for concrete exposed to freeze-thaw cycles at early-age
    Liu, Dongyun
    Tu, Yongming
    Sas, Gabriel
    Elfgren, Lennart
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 312
  • [43] A study on performance of natural rubber bearings with time under freeze-thaw cycles
    Hong, Difu
    Ma, Yuhong
    Zhao, Guifeng
    JOURNAL OF RUBBER RESEARCH, 2023, 27 (2) : 245 - 257
  • [44] Seismic Performance of Reinforced Concrete Short Columns Subjected to Freeze-Thaw Cycles
    Zhang, Yixin
    Zheng, Shansuo
    Rong, Xianliang
    Dong, Liguo
    Zheng, Hao
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [45] Performance Evolution of Cement Improved Soft Clay under Freeze-Thaw Cycles
    Tan, Yunzhi
    Wu, Jun
    Huang, Longbo
    Wang, Hongxing
    Zuo, Qingjun
    Yi, Juran
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2017, 20 (02): : 209 - 214
  • [46] Effect of Freeze-Thaw Cycles on the Internal Structure and Performance of Semirigid Base Materials
    Wang, Yiqi
    Tan, Yiqiu
    Guo, Meng
    Wang, Xinglong
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 2017
  • [47] Effect of freeze-thaw cycles on the properties and performance of membrane-electrode assemblies
    Guo, Qunhui
    Qi, Zhigang
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1269 - 1274
  • [48] Numerical Studies on the Performance Degradation of Headed Stud Shear Connectors in Composite Structures Under Freeze-Thaw Cycles
    Xiao, Lin
    Wei, Xing
    Kang, Zhirui
    Zhang, Jing
    Zhan, Gangyi
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2024, 22 (04) : 639 - 653
  • [49] Influence of Steel Fiber on Durability Performance of Concrete under Freeze-Thaw Cycles
    Li, Dong
    Guo, Qing
    Liu, Shi
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [50] Measuring Total Mercury Through Freeze-Thaw Cycles
    Mcgovarin, Stephen
    Litvinov, Alex
    Trapper, Clarence
    Tozer, William
    Buell, Mary-Claire
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2024, 112 (01)