A deep learning convolutional neural network and multi-layer perceptron hybrid fusion model for predicting the mechanical properties of carbon fiber

被引:24
|
作者
Li, Mengze [1 ,2 ]
Li, Shuran [1 ,2 ]
Tian, Yu [1 ,2 ]
Fu, Yihan [1 ,2 ]
Pei, Yanliang [3 ,4 ]
Zhu, Weidong [1 ,2 ]
Ke, Yinglin [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mech Engn, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mech Engn, Key Lab Adv Mfg Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
[3] Laoshan Lab, Lab Marine Geol, Qingdao, Peoples R China
[4] MNR, Inst Oceanog 1, Key Lab Marine Geol & Metallogeny, Qingdao, Peoples R China
关键词
Carbon fibers; Polymer-matrix composites (PMCs); Mechanical properties; Deep learning; Multimodal fusion; BEHAVIOR; CFRP;
D O I
10.1016/j.matdes.2023.111760
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, deep learning methods have become one of the hottest topics in predicting material properties, however, one bottleneck in current research is the simultaneous analysis of heterogeneous data. In this study, a deep learning fusion model is developed for the first time to predict the material properties of carbon fiber monofilament using textual (macroscopic properties of composites and matrix) and visual (two-point statistics of microstructures) data. For this, 1200 stochastic microstructures are generated using the greedy-based generation (GBG) algorithm. Then, the statistical representations of microstructures are determined using two-point statistics and the macroscopic properties are calculated based on a micro-scale finite element (FE) simulation. Finally, the visual and textual data are fed into the convolutional neural network (CNN) and multi-layer perceptron (MLP) fusion model for predicting the mechanical properties of carbon fibers. The developed hybrid CNN-MLP fusion model achieves encouraging average testing R2 of longitudinal modulus, transverse modulus, in-plane shear modulus, major Poisson's ratio, and out-of-plane shear modulus of carbon fibers with values of 0.991, 0.969, 0.984, 0.903, and 0.955, respectively. Thus, the proposed strategy provides a promising framework for predicting material properties via multisource heterogeneous data and is expected to accelerate the smart design and optimization of materials. CO 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] FPGA acceleration on a multi-layer perceptron neural network for digit recognition
    Isaac Westby
    Xiaokun Yang
    Tao Liu
    Hailu Xu
    The Journal of Supercomputing, 2021, 77 : 14356 - 14373
  • [32] Extraction of voltage harmonics using multi-layer perceptron neural network
    Tumay, Mehmet
    Meral, M. Emin
    Bayindir, K. Cagatay
    NEURAL COMPUTING & APPLICATIONS, 2008, 17 (5-6): : 585 - 593
  • [33] Modelling the infiltration process with a multi-layer perceptron artificial neural network
    Sy, NL
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2006, 51 (01): : 3 - 20
  • [34] Forecasting Stock Prices Using a Hybrid Deep Learning Model Integrating Attention Mechanism, Multi-Layer Perceptron, and Bidirectional Long-Short Term Memory Neural Network
    Chen, Qian
    Zhang, Wenyu
    Lou, Yu
    IEEE ACCESS, 2020, 8 : 117365 - 117376
  • [35] Applying a multi-layer perceptron model for predicting gasification process outcomes
    Wei, Mingtong
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (04) : 4633 - 4655
  • [36] Predicting the california bearing ratio via hybrid method of multi-layer perceptron
    Wang, Bing
    Yue, Wei
    Zhang, Lu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 2693 - 2711
  • [37] Graph convolutional network-Long short term memory neural network- multi layer perceptron- Gaussian progress regression model: A new deep learning model for predicting ozone concertation
    Ehteram, Mohammad
    Ahmed, Ali Najah
    Khozani, Zohreh Sheikh
    El-Shafie, Ahmed
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (06)
  • [38] Classification of cardiac arrhythmia using hybrid genetic algorithm optimisation for multi-layer perceptron neural network
    Kumari, V. S. R.
    Kumar, P. R.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2016, 20 (02) : 132 - 149
  • [39] Multi-Layer Fusion Neural Network for Deepfake Detection
    Zhao, Zheng
    Wang, Penghui
    Lu, Wei
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2021, 13 (04) : 26 - 39
  • [40] A Dynamic Collaborative Filtering Algorithm based on Convolutional Neural Networks and Multi-layer Perceptron
    Sun, Qiang
    Shi, Lei-lei
    Liu, Lu
    Han, Zi-xuan
    Jiang, Liang
    Lu, Yao
    Panneerselvam, John
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 459 - 466