Face recognition via selective denoising, filter faces and hog features

被引:2
|
作者
Chen, Guang Yi [1 ]
Krzyzak, Adam [1 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
关键词
Face recognition; Hyperspectral face recognition; Nearest neighbour classifier; Illumination invariant; Histogram of oriented gradient features; Image denoising; ILLUMINATION; TRANSFORM; NOISE; ENHANCEMENT; NORMALIZATION;
D O I
10.1007/s11760-023-02769-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Face recognition has become a very important topic in recent years. In this paper, we introduce selective denoising with block matching and 3D filtering (BM3D) or video BM3D (VBM3D), compute filter faces, and extract the histogram of oriented gradient (HOG) features from the extracted feature maps. We apply our new method to both illumination invariant face recognition and hyperspectral face recognition. For illumination invariant face recognition, our proposed method in this paper achieves the highest correct classification rate (98.4%) for the Extended Yale Face dataset B and similar results (100%) for the CMU-PIE dataset. For hyperspectral face recognition, our new method achieves perfect classification rate (100%) for both the PolyU-HSFD dataset and the CMU-HSFD dataset.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条
  • [21] Face recognition using HOG-EBGM
    Albiol, Alberto
    Monzo, David
    Martin, Antoine
    Sastre, Jorge
    Albiol, Antonio
    PATTERN RECOGNITION LETTERS, 2008, 29 (10) : 1537 - 1543
  • [22] COLOR HOG-EBGM FOR FACE RECOGNITION
    Monzo, David
    Albiol, Alberto
    Albiol, Antonio
    Mossi, Jose M.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 785 - 788
  • [23] Integrating Visual Selective Attention Model with HOG Features for Traffic Light Detection and Recognition
    Ji, Yang
    Yang, Ming
    Lu, Zhengchen
    Wang, Chunxiang
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 280 - 285
  • [24] Face recognition using asymmetric faces
    Gutta, S
    Wechsler, H
    BIOMETRIC AUTHENTICATION, PROCEEDINGS, 2004, 3072 : 162 - 168
  • [25] Smiling faces are better for face recognition
    Yacoob, Y
    Davis, L
    FIFTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2002, : 59 - 64
  • [26] HOG and LBP: Towards a Robust Face Recognition System
    Ghorbani, Mohsen
    Targhi, Alireza Tavakoli
    Dehshibi, Mohammad Mahdi
    2015 TENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), 2015, : 63 - 66
  • [27] Selective generation of Gabor features for fast face recognition on mobile devices
    Oh, Jiyong
    Choi, Sang-Il
    Kim, Chunghoon
    Cho, Jungchan
    Choi, Chong-Ho
    PATTERN RECOGNITION LETTERS, 2013, 34 (13) : 1540 - 1547
  • [28] Face Recognition Improvement by Converting Expression Faces to Neutral Faces
    Petpairote, Chayanut
    Madarasmi, Suthep
    2013 13TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT): COMMUNICATION AND INFORMATION TECHNOLOGY FOR NEW LIFE STYLE BEYOND THE CLOUD, 2013, : 439 - 444
  • [29] Convolution based Face Recognition using DWT and HOG
    Ravikumar, Jyothi
    Ramachandra, A. C.
    Raja, K. B.
    Venugopal, K. R.
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 327 - 334
  • [30] A Multiscale Method for HOG-Based Face Recognition
    Wei, Xin
    Guo, Gongde
    Wang, Hui
    Wan, Huan
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2015, PT I, 2015, 9244 : 535 - 545