Performance analysis of four machine learning algorithms for the accurate prediction of metastatic disease in cutaneous squamous cell carcinoma

被引:0
|
作者
Andrew, Tom William
Bolnykh, Iakov
Bowes, Amy Louise
Fernando, Suhari Arahliya Serendibsha Grace
Nair, Ashvati
Martin, Sabrina Noor Pia
Maan, Balraj
Sloan, Philip
Lovat, Penny
Rose, Aidan
机构
[1] Natl Hlth Serv, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Univ, Newcastle Upon Tyne, Tyne & Wear, England
[3] Royal Victoria Infirm, Newcastle Upon Tyne, Tyne & Wear, England
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
e13579
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Cutaneous squamous cell carcinoma metastatic to parotid - analysis of prognostic factors and treatment outcome
    Goh, Robin Yeong Hong
    Bova, Ron
    Fogarty, Gerald B.
    WORLD JOURNAL OF SURGICAL ONCOLOGY, 2012, 10
  • [42] Genomic mutation analysis of circulating tumor DNA in metastatic cutaneous squamous cell carcinoma
    Sawamura, Soichiro
    Myangat, Tselmeg Mijiddorj
    Kajihara, Ikko
    Tanaka, Kenichiro
    Kanemaru, Hisashi
    Nishimura, Yuki
    Kashiwada-Nakamura, Kayo
    Makino, Kastunari
    Aoi, Jun
    Masuguchi, Shinichi
    Fukushima, Satoshi
    JOURNAL OF DERMATOLOGICAL SCIENCE, 2022, 106 (01) : 61 - 64
  • [43] Cutaneous squamous cell carcinoma metastatic to parotid - analysis of prognostic factors and treatment outcome
    Robin Yeong Hong Goh
    Ron Bova
    Gerald B Fogarty
    World Journal of Surgical Oncology, 10
  • [44] Whole genome analysis reveals the genomic complexity in metastatic cutaneous squamous cell carcinoma
    Thind, Amarinder Singh
    Ashford, Bruce
    Strbenac, Dario
    Mitchell, Jenny
    Lee, Jenny
    Mueller, Simon A. A.
    Minaei, Elahe
    Perry, Jay R. R.
    Ch'ng, Sydney
    Iyer, N. Gopalakrishna
    Clark, Jonathan R. R.
    Gupta, Ruta
    Ranson, Marie
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [45] Performance analysis of machine learning algorithms for hybrid power generation prediction
    Gencay Sarıışık
    Ahmet Sabri Öğütlü
    Neural Computing and Applications, 2025, 37 (5) : 3203 - 3225
  • [46] Cutaneous squamous cell carcinoma characterized by MALDI mass spectrometry imaging in combination with machine learning
    Brorsen, Lauritz F.
    McKenzie, James S.
    Tullin, Mette F.
    Bendtsen, Katja M. S.
    Pinto, Fernanda E.
    Jensen, Henrik E.
    Haedersdal, Merete
    Takats, Zoltan
    Janfelt, Christian
    Lerche, Catharina M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] A narrative review on machine learning in diagnosis and prognosis prediction for tongue squamous cell carcinoma
    Lin, Yingyu
    Tang, Mimi
    Liu, Yi
    Jiang, Mengjie
    He, Shuangshuang
    Zeng, Donglin
    Cui, Min-Yi
    TRANSLATIONAL CANCER RESEARCH, 2022, : 4409 - 4415
  • [48] Metabolism score and machine learning models for the prediction of esophageal squamous cell carcinoma progression
    Chen, Lu
    Zhang, Wenxin
    Shi, Huanying
    Zhu, Yongjun
    Chen, Haifei
    Wu, Zimei
    Zhong, Mingkang
    Shi, Xiaojin
    Li, Qunyi
    Wang, Tianxiao
    CANCER SCIENCE, 2024, 115 (09) : 3127 - 3142
  • [49] Machine learning-based prediction of survival prognosis in esophageal squamous cell carcinoma
    Zhang, Kaijiong
    Ye, Bo
    Wu, Lichun
    Ni, Sujiao
    Li, Yang
    Wang, Qifeng
    Zhang, Peng
    Wang, Dongsheng
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Predicting Overall Survival Using Machine Learning Algorithms in Oral Cavity Squamous Cell Carcinoma
    Tan, Jia Yan
    Adeoye, John
    Thomson, Peter
    Sharma, Dileep
    Ramamurthy, Poornima
    Choi, Siu-Wai
    ANTICANCER RESEARCH, 2022, 42 (12) : 5859 - 5866