Molten salt assisted synthesis of Single-Atom nickel catalysts for electroreduction of CO2 with nearly 100% CO selectivity

被引:11
|
作者
Yan, Xiao-Chun [1 ]
Dong, Hong [1 ,2 ]
Tong, Hao [1 ]
Wang, Ya [1 ]
Shao, Lu-Hua [1 ]
Du, Yu-Jiang [1 ]
Ge, Jun-Tao [1 ]
Fang, Wen-Bin [1 ]
Zhang, Feng-Ming [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Heilongjiang Prov Key Lab CO Resource Utilizat & E, Harbin 150040, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; electroreduction; Single-atom catalysts; Molten salt method; Zeolite imidazolate framework; N-doped carbon nanosheets; METAL-ORGANIC FRAMEWORKS; EFFICIENT ELECTROREDUCTION; SITES; CONVERSION; REDUCTION;
D O I
10.1016/j.apsusc.2023.157828
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis of single-atom catalysts (SACs) with target architecture owning ultrathin layered morphology, high surface area and exposed metal active sites is still a great challenge. Herein, we chose 2D bimetallic ZIF-L as precursor combined with molten salt assisted method realizing the aimed synthesis of single-atom Ni imbedded in porous and ultrathin N-doped carbon nanosheets for efficient electrocatalytic CO2 reduction. Molten salt assisted method avoids the collapse, agglomeration, and shrinkage of precursor nanosheets in synthetic process, and benefits the formation of porous structure of nitrogen-doped carbon nanosheets with exposed single-atom Ni active sites. The as-synthesized MS-L-Ni-NC exhibits remarkable electrocatalytic CO2-to-CO performance with the faradaic efficiency over 95.9% in a wide potential range from -0.7 to -1.0 V vs. RHE in H-type cell. An optimal FECO of 98.7% at 0.8 V vs. RHE and a large current density of 20.6 mA center dot cm(-2) at -1.0 V are observed for the MS-L-Ni-NC, which are much higher than those of D-L-Ni-NC without molten-salt assistance and MS-Ni-NC with 3D bimetallic ZIF as precursor. DFT calculations reveal that the coordinated unsaturated pyridine Ni-N sites are the active centers for ECO2RR.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Boosting CO2 electroreduction to CO with abundant nickel single atom active sites†
    Wang, Wei-juan
    Cao, Changsheng
    Wang, Kaiwen
    Zhou, Tianhua
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (10) : 2542 - 2548
  • [42] Recent Advances on Single-Atom Catalysts for CO2 Reduction
    Liu, Lizhen
    Li, Mingtao
    Chen, Fang
    Huang, Hongwei
    SMALL STRUCTURES, 2023, 4 (03):
  • [43] Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction
    Feng, Xueting
    Shang, Ziang
    Qin, Rong
    Han, Yunhu
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (04)
  • [44] Electrocatalytic CO2 Reduction over Single-atom Catalysts
    Jin, Xiangyuan
    Zhang, Libing
    Sun, Xiaofu
    Han, Buxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [45] Steering the Product Selectivity of CO2 Electroreduction by Single Atom Switching in Isostructural Copper Nanocluster Catalysts
    Han, Chao
    Yang, Tao
    Fang, Youqiong
    Du, Yuanxin
    Jin, Shan
    Xiong, Lin
    Zhu, Manzhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [46] Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction
    Rong, Xin
    Wang, Hong-Juan
    Lu, Xiu-Li
    Si, Rui
    Lu, Tong-Bu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (05) : 1961 - 1965
  • [47] Recent advances of single-atom catalysts in CO2 conversion
    Wang, Shunwu
    Wang, Ligang
    Wang, Dingsheng
    Li, Yadong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (07) : 2759 - 2803
  • [48] Mechanism insights on single-atom catalysts for CO2 conversion
    Wu, Qing
    Wu, Chongchong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4876 - 4906
  • [49] Heterogeneous single-atom catalysts for efficient CO2 conversion
    Zhang, Tao
    Yang, Xiaofeng
    Liu, Bin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [50] CO2 electroreduction on single atom catalysts: the role of the DFT functional
    Misra, Debolina
    Di Liberto, Giovanni
    Pacchioni, Gianfranco
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (14) : 10746 - 10756