IIM: an information interaction mechanism for aspect-based sentiment analysis

被引:1
|
作者
Chen, Le [1 ]
Ge, Lina [1 ]
Zhou, Wei [1 ]
机构
[1] Guangxi Univ Nationalities, Inst Artificial Intelligence, Nan Ning, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-based sentiment analysis; term polarity co-extraction; aspect term extraction; aspect sentiment classification; label drift phenomenon (LDP); information interaction mechanism (IIM);
D O I
10.1080/09540091.2023.2283390
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Term polarity co-extraction is an aspect-based sentiment analysis task, which has been widely used in the fields of user opinions extraction. It consists of two subtasks: aspect term extraction and aspect sentiment classification. Most existing studies solve aforesaid subtasks as independent tasks or simply unify the two subtasks without making full use of the relationship between tasks to mine the interaction of text information, which leads to low performance for practical applications. Meanwhile, the learning framework for these studies has a label drift phenomenon (LDP) in the process of predictive learning, increasing the learning error rate. To address the above problems, this study unifies subtasks and proposes a Unified framework based on the information interaction mechanism framework, called IIM. Specifically, we design an Information Interaction Channel (IIC) to construct closer semantic features to extract preliminary term-polarity unified labels from the perspective of basic semantics. For label inconsistency between aspect terms, a Position-aware Module (SAM) is proposed to alleviate the Label Drift Phenomenon (LDP). Moreover, we introduce a syntax-attention graph neural network (Syn-AttGCN) to model the syntactic structure of text and strengthen the emotional connection between aspect terms. The experimental results show that IIM outperforms most baselines. Meanwhile, the SAM module has a certain slowing effect on LDP.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis
    Wan, Hai
    Yang, Yufei
    Du, Jianfeng
    Liu, Yanan
    Qi, Kunxun
    Pan, Jeff Z.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9122 - 9129
  • [22] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [23] Data augmentation for aspect-based sentiment analysis
    Guangmin Li
    Hui Wang
    Yi Ding
    Kangan Zhou
    Xiaowei Yan
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 125 - 133
  • [24] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052
  • [25] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [26] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [27] A corpus for aspect-based sentiment analysis in Vietnamese
    Nguyen, Minh-Hao
    Nguyen, Tri Minh
    Thin, Dang Van
    Nguyen, Ngan Luu-Thuy
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 317 - 321
  • [28] Towards Generative Aspect-Based Sentiment Analysis
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 504 - 510
  • [29] DRGCN Multitasking for Aspect-Based Sentiment Analysis
    Du, Mengyang
    Wang, Hongbin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2025, 29 (02) : 268 - 276
  • [30] Aspect-Based Sentiment Analysis for User Reviews
    Du, Jinyang
    Zhang, Yin
    Ma, Xiao
    Wen, Haoyu
    Fortino, Giancarlo
    COGNITIVE COMPUTATION, 2021, 13 (05) : 1114 - 1127