Generic properties of eigenvalues of the fractional Laplacian

被引:2
|
作者
Fall, Mouhamed Moustapha [1 ]
Ghimenti, Marco [2 ]
Micheletti, Anna Maria [2 ]
Pistoia, Angela [3 ]
机构
[1] African Inst Math Sci Senegal, KM2 Route Joal Mbour 1418, Mbour, Senegal
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento SBAI, via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
VARIATIONAL ELLIPTIC OPERATOR;
D O I
10.1007/s00526-023-02574-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet eigenvalues of the fractional Laplacian (-Delta)(s), with s is an element of(0, 1), related to a smooth bounded domain Omega. We prove that there exists an arbitrarily small perturbation (Omega) over tilde = (I + psi)(Omega) of the original domain such that all Dirichlet eigenvalues of the fractional Laplacian associated to (Omega) over tilde are simple. As a consequence we obtain that all Dirichlet eigenvalues of the fractional Laplacian on an interval are simple. In addition, we prove that for a generic choice of parameters all the eigenvalues of some non-local operators are also simple.
引用
收藏
页数:17
相关论文
共 50 条