Generic properties of eigenvalues of the fractional Laplacian

被引:2
|
作者
Fall, Mouhamed Moustapha [1 ]
Ghimenti, Marco [2 ]
Micheletti, Anna Maria [2 ]
Pistoia, Angela [3 ]
机构
[1] African Inst Math Sci Senegal, KM2 Route Joal Mbour 1418, Mbour, Senegal
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento SBAI, via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
VARIATIONAL ELLIPTIC OPERATOR;
D O I
10.1007/s00526-023-02574-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet eigenvalues of the fractional Laplacian (-Delta)(s), with s is an element of(0, 1), related to a smooth bounded domain Omega. We prove that there exists an arbitrarily small perturbation (Omega) over tilde = (I + psi)(Omega) of the original domain such that all Dirichlet eigenvalues of the fractional Laplacian associated to (Omega) over tilde are simple. As a consequence we obtain that all Dirichlet eigenvalues of the fractional Laplacian on an interval are simple. In addition, we prove that for a generic choice of parameters all the eigenvalues of some non-local operators are also simple.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Generic properties of eigenvalues of the fractional Laplacian
    Mouhamed Moustapha Fall
    Marco Ghimenti
    Anna Maria Micheletti
    Angela Pistoia
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [2] BOUNDS FOR THE EIGENVALUES OF THE FRACTIONAL LAPLACIAN
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (03)
  • [3] Lower bounds for fractional Laplacian eigenvalues
    Wei, Guoxin
    Sun, He-Jun
    Zeng, Lingzhong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [4] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Dyda, Bartlomiej
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 536 - 555
  • [5] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Bartłlomiej Dyda
    Fractional Calculus and Applied Analysis, 2012, 15 : 536 - 555
  • [6] SHARPER ESTIMATES ON THE EIGENVALUES OF DIRICHLET FRACTIONAL LAPLACIAN
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 2209 - 2225
  • [7] EIGENVALUES HOMOGENIZATION FOR THE FRACTIONAL p-LAPLACIAN
    Martin Salort, Ariel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [8] Variational eigenvalues of the fractional g-Laplacian
    Bahrouni, Sabri
    Ounaies, Hichem
    Salort, Ariel
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (06) : 1021 - 1044
  • [9] On the eigenvalues of the p&q-fractional Laplacian
    Bahrouni, Sabri
    Hajaiej, Hichem
    Song, Linjie
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (04)
  • [10] Properties of eigenvalues and some regularities on fractional p-Laplacian with singular weights
    Ho, Ky
    Sim, Inbo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189