Statistical properties of effective elastic moduli of random cubic polycrystals

被引:1
|
作者
Ammar, Amine
Sheng, Ningyue [1 ]
Khazaie, Shahram [1 ]
Chevreuil, Mathilde [1 ]
Freour, Sylvain [1 ]
机构
[1] Univ Nantes, Ecole Cent Nantes, GeM, UMR CNRS 6183, F-44035 Nantes, France
关键词
Polycrystals; random fields; effective elastic moduli; Karhonen-Loeve expansion; SIZE; PREDICTIONS; PLASTICITY;
D O I
10.1051/meca/2023030
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The homogenized elastic properties of polycrystals depend on the grain morphology and crystallographic orientations. For simplification purposes, the orientations of the grains are usually considered three independent Euler angles. However, experimental investigations reveal spatial correlations in these angles. The Karhunen-Loeve expansion is used to generate random fields of Euler angles having exponential kernel functions with varying correlation lengths. The effective elastic moduli for numerically generated statistically equiaxed cubic polycrystals are estimated via the classical Eshelby-Kroner Self-Consistent homogenization model. The influence of the correlation lengths of the orientations' random fields on the statistical properties of the effective elastic moduli has been investigated. Our results show that spatially correlated Euler angles could increase the variability of the homogenized elastic properties compared to the ones having uncorrelated Euler angles. Nevertheless, using independent random variables for Euler angles remains valid when correlation lengths are close to the average grain size.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Asymptotic estimates on scatter ranges for elastic properties of completely random polycrystals
    Chinh, PD
    PHYSICA B-CONDENSED MATTER, 2003, 334 (1-2) : 98 - 111
  • [42] Closed form approximation of effective elastic moduli of composites with cubic, octet and cubic plus octet periodic microstructures
    Mejak, George
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2019, 77
  • [43] Effective elastic properties of polycrystals based on phase-field description
    Sheng, G.
    Bhattacharyya, S.
    Zhang, H.
    Chang, K.
    Shang, S. L.
    Mathaudhu, S. N.
    Liu, Z. K.
    Chen, L. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 554 : 67 - 71
  • [44] Quantitative description and numerical simulation of random microstructures of composites and their effective elastic moduli
    Buryachenko, VA
    Pagano, NJ
    Kim, RY
    Spowart, JE
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (01) : 47 - 72
  • [45] Estimation of effective elastic moduli of random structure composites by the method of fundamental solutions
    Buryachenko, Valeriy A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 62 : 13 - 21
  • [46] Lattice strains and diffraction elastic constants of cubic polycrystals
    Zhang, Yin
    Chen, Wen
    McDowell, David L.
    Wang, Y. Morris
    Zhu, Ting
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 138
  • [47] Elastic moduli and hardness of cubic silicon nitride
    Zerr, A
    Kempf, M
    Schwarz, M
    Kroke, E
    Göken, M
    Riedel, R
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (01) : 86 - 90
  • [48] THE ELASTIC SHEAR MODULI OF A CUBIC-CRYSTAL
    WALPOLE, LJ
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1986, 19 (03) : 457 - 462
  • [49] ELASTIC-MODULI OF POLYCRYSTALLINE CUBIC METALS
    ANDREWS, KW
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (18) : 2527 - 2534
  • [50] ELASTIC PROPERTIES OF POLYCRYSTALS - A REVIEW
    HIRSEKORN, S
    TEXTURES AND MICROSTRUCTURES, 1990, 12 (1-3): : 1 - 14