Vocal markers of schizophrenia: assessing the generalizability of machine learning models and their clinical applicability

被引:0
|
作者
Parola, A. [1 ]
Rybner, A. [1 ]
Jessen, E. T. [1 ]
Mortensen, M. Damsgaard [1 ]
Larsen, S. Nyhus [1 ]
Simonsen, A. [1 ]
Zhou, Y. [2 ]
Koelkebeck, K. [3 ]
Bliksted, V. [1 ]
Fusaroli, R. [1 ]
机构
[1] Aarhus Univ, Aarhus, Denmark
[2] Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Duisburg Essen, Hosp & Inst, Essen, Germany
关键词
D O I
10.1192/j.eurpsy.2023.444
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
EPP0106
引用
收藏
页码:S186 / S186
页数:1
相关论文
共 50 条
  • [31] Reply to: Towards increasing the clinical applicability of machine learning biomarkers in psychiatry
    Marcel Adam Just
    Vladimir L. Cherkassky
    David Brent
    Nature Human Behaviour, 2021, 5 : 433 - 435
  • [32] Reply to: Towards increasing the clinical applicability of machine learning biomarkers in psychiatry
    Just, Marcel Adam
    Cherkassky, Vladimir L.
    Brent, David
    NATURE HUMAN BEHAVIOUR, 2021, 5 (04) : 433 - 435
  • [33] Assessing Metabolic Markers in Glioblastoma Using Machine Learning: A Systematic Review
    Neil, Zachery D. D.
    Pierzchajlo, Noah
    Boyett, Candler
    Little, Olivia
    Kuo, Cathleen C. C.
    Brown, Nolan J. J.
    Gendreau, Julian
    METABOLITES, 2023, 13 (02)
  • [34] EFAR-MMLA: An Evaluation Framework to Assess and Report Generalizability of Machine Learning Models in MMLA
    Chejara, Pankaj
    Prieto, Luis P.
    Ruiz-Calleja, Adolfo
    Rodriguez-Triana, Maria Jesus
    Shankar, Shashi Kant
    Kasepalu, Reet
    SENSORS, 2021, 21 (08)
  • [35] On Modelability and Generalizability: Are Machine Learning Models for Drug Synergy Exploiting Artefacts and Biases in Available Data?
    Majha, Arushi G. K.
    Stott, Ian
    Bender, Andreas
    MACHINE LEARNING IN COMPUTATIONAL BIOLOGY, VOL 240, 2023, 240
  • [36] Mitigating Bias in Clinical Machine Learning Models
    Perez-Downes, Julio C.
    Tseng, Andrew S.
    McConn, Keith A.
    Elattar, Sara M.
    Sokumbi, Olayemi
    Sebro, Ronnie A.
    Allyse, Megan A.
    Dangott, Bryan J.
    Carter, Rickey E.
    Adedinsewo, Demilade
    CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2024, 26 (03) : 29 - 45
  • [37] Generalizability of machine learning models for diabetes detection a study with nordic islet transplant and PIMA datasets
    Chellappan, Dinesh
    Rajaguru, Harikumar
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Mitigating Bias in Clinical Machine Learning Models
    Julio C. Perez-Downes
    Andrew S. Tseng
    Keith A. McConn
    Sara M. Elattar
    Olayemi Sokumbi
    Ronnie A. Sebro
    Megan A. Allyse
    Bryan J. Dangott
    Rickey E. Carter
    Demilade Adedinsewo
    Current Treatment Options in Cardiovascular Medicine, 2024, 26 : 29 - 45
  • [39] Applicability of several machine learning models in estimation of vortex tube trapping efficiency
    Kumar, Shubham
    Tiwari, N. K.
    Ranjan, Subodh
    WATER SUPPLY, 2022, 22 (11) : 8173 - 8195
  • [40] Assessing the implementation of machine learning models for thermal treatments design
    Eres-Castellanos, Adriana
    De-Castro, David
    Capdevila, Carlos
    Garcia-Mateo, Carlos
    Caballero, Francisca G.
    MATERIALS SCIENCE AND TECHNOLOGY, 2021, 37 (16) : 1302 - 1310