Nonlinear Schrodinger Approximation for the Electron Euler-Poisson Equation

被引:0
|
作者
Liu, Huimin [1 ]
Pu, Xueke [2 ]
机构
[1] Shanxi Univ Finance & Econ, Fac Appl Math, Taiyuan 030006, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation approximation; Nonlinear Schrodinger equation; Electron Euler-Poisson equation; LONG-TIME SOLUTIONS; MODULATION APPROXIMATION; NLS APPROXIMATION; JUSTIFICATION; VALIDITY;
D O I
10.1007/s11401-023-0020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Schrodinger (NLS for short) equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. In this paper, the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation, an important model to describe Langmuir waves in a plasma. They derive an approximate wave packet-like solution to the evolution equations by the multiscale analysis, then they construct the modified energy functional based on the quadratic terms and use the rotating coordinate transform to obtain uniform estimates of the error between the true and approximate solutions.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 50 条
  • [41] STABILITY ANALYSIS OF THE EULER-POISSON EQUATIONS
    FABRE, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 101 (02) : 445 - 451
  • [42] Entire solutions of the Euler-Poisson equations
    Belyaev A.V.
    Ukrainian Mathematical Journal, 2004, 56 (5) : 817 - 829
  • [43] Local integrability of the Euler-Poisson equations
    Bruno, A. D.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 512 - 516
  • [44] NONNEUTRAL GLOBAL SOLUTIONS FOR THE ELECTRON EULER-POISSON SYSTEM IN THREE DIMENSIONS
    Germain, Pierre
    Masmoudi, Nader
    Pausader, Benoit
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 267 - 278
  • [45] Critical thresholds in Euler-Poisson equations
    Engelberg, S
    Liu, HL
    Tadmor, E
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 109 - 157
  • [46] ANALYTICAL PROPERTIES OF THE EULER-POISSON EQUATIONS
    BELYAEV, AV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (08): : 3 - 5
  • [47] A NEW PROPERTY OF THE EULER-POISSON EQUATIONS
    ARKHANGELSKII, IA
    DOKLADY AKADEMII NAUK SSSR, 1981, 258 (04): : 810 - 811
  • [48] Solutions of Euler-Poisson equations in Rn
    Deng Yinbin
    Gao Yan
    Xiang Jianlin
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 24 - 42
  • [49] The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation
    Lannes, David
    Linares, Felipe
    Saut, Jean-Claude
    STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 : 181 - 213
  • [50] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418