Modeling the Tensile Behavior of Fiber-Reinforced Strain-Hardening Cement-Based Composites: A Review

被引:4
|
作者
Ribeiro, Paula de Oliveira [1 ]
Krahl, Pablo Augusto [2 ]
Carrazedo, Ricardo [3 ]
Bernardo, Luis Filipe Almeida [4 ]
机构
[1] Univ Fed Juiz de Fora, Dept Struct Engn, Rua Jose Lourenco Kelmer s n Sao Pedro, BR-36036900 Juiz De Fora, MG, Brazil
[2] Univ Prebiteriana Mackenzie, Dept Civil Engn, Ave Brasil 1220 Jardim Guanabara, BR-13073148 Campinas, SP, Brazil
[3] Univ Sao Paulo, Sch Engn Sao Carlos, Ave Trabalhador Saocarlense 400, BR-13566590 Sao Carlos, SP, Brazil
[4] Univ Beira Interior, Dept Civil Engn & Architecture, P-6201001 Covilha, Portugal
关键词
Strain-Hardening Cement-Based Composites (SHCCs); tensile behavior; modeling methodologies; HIGH-PERFORMANCE CONCRETE; PULL-OUT BEHAVIOR; STEEL FIBERS; FLEXURAL BEHAVIOR; MECHANICAL-PROPERTIES; INVERSE ANALYSIS; UHP-FRC; ORIENTATION; SIZE; GEOMETRY;
D O I
10.3390/ma16093365
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain-Hardening Cement-Based Composites (SHCCs) exhibit high toughness and durability, allowing the design of resilient structures. Despite the exceptional properties of SHCC and the current modeling techniques, the widespread use of the composite is limited. One limiting factor is developing and validating analytical models that could be used for optimizing mixes and designing structural elements. Furthermore, the composite mechanical response is complex and depends on several phenomena, such as fiber pullout, fiber orientation and distribution, size effect, fiber content, group effect, embedding length, fiber dimensions, and matrix strength. In this context, this research presents the state-of-the-art on the micro- and mesomechanisms occurring in SHCC during cracking and robust techniques to predict its tensile behavior accounting for such phenomena already proved experimentally. The study is relevant for designers and the scientific community because it presents the gaps for the research groups to develop new investigations for consolidating SHCC, which is a material to produce resilient structures.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Characterization of Novel Natural Fiber-Reinforced Strain-Hardening Cementitious Composites
    Premkumar, N.
    Maheswaran, J.
    Chellapandian, M.
    ACI STRUCTURAL JOURNAL, 2024, 121 (05)
  • [42] Behaviour of Strain-Hardening Cement-Based Composites Under High Strain Rates
    Mechtcherine, Viktor
    Silva, Flavio de Andrade
    Butler, Marko
    Zhu, Deju
    Mobasher, Barzin
    Gao, Shang-Lin
    Maeder, Edith
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2011, 9 (01) : 51 - 62
  • [43] TENSILE CRACK WIDHTS OF STRAIN HARDENING CEMENT-BASED COMPOSITES
    Boshoff, William P.
    Nieuwoudt, Pieter D.
    2ND INTERNATIONAL RILEM CONFERENCE ON STRAIN HARDENING CEMENTITIOUS COMPOSITES (SHCC2-RIO), 2011, 81 : 199 - 206
  • [44] MECHANICAL BEHAVIOUR OF STRAIN-HARDENING CEMENT-BASED COMPOSITES (SHCC) UNDER LOW AND HIGH TENSILE STRAIN RATES
    Silva, F. A.
    Butler, M.
    Mechtcherine, V.
    Zhu, D.
    Mobasher, B.
    FRACTURE AND DAMAGE OF ADVANCED FIBRE-REINFORCED CEMENT-BASED MATERIALS, 2010, : 23 - +
  • [45] Stress-strain behaviour of Strain-Hardening Cement-based Composites (SHCC) under repeated tensile loading
    Mechtcherine, V.
    Jun, P.
    FRACTURE MECHANICS OF CONCRETE AND CONCRETE STRUCTURES, VOLS 1-3: VOL 1: NEW TRENDS IN FRACTURE MECHANICS OF CONCRETE; VOL 2: DESIGN, ASSESSMENT AND RETROFITTING OF RC STRUCTURES; VOL 3: HIGH-PERFORMANCE CONCRETE, BRICK-MASONRY AND ENVIRONMENTAL ASPECTS, 2007, 1-3 : 1441 - 1448
  • [46] Durability of mechanically loaded Strain-hardening cement-based composites (SHCC)
    Cao, Weiqun
    Tian, Li
    Zhao, Tiejun
    EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 : 577 - 581
  • [47] Hybrid synthetic/natural fiber-reinforced strain-hardening magnesia-based composites
    Wu, Bo
    Liu, Yangqing
    Unluer, Cise
    Qiu, Jishen
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 451
  • [48] Crack Formation and Durability of Strain-hardening Cement-based Composites (SHCC)
    van Zijl, G. P. A. G.
    BASIC RESEARCH ON CONCRETE AND APPLICATIONS, 2011, : 277 - 289
  • [49] Effect of accelerated freeze-thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites (SHCCs)
    Yun, Hyun-Do
    COMPOSITES PART B-ENGINEERING, 2013, 52 : 11 - 20
  • [50] Performance of various strain-hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading
    Curosu, Iurie
    Mechtcherine, Viktor
    Forni, Daniele
    Cadoni, Ezio
    CEMENT AND CONCRETE RESEARCH, 2017, 102 : 16 - 28