Lie Bialgebra Structures on the Lie Algebra £ Related to the Virasoro Algebra

被引:0
|
作者
Chen, Xue [1 ]
Su, Yihong [1 ]
Zheng, Jia [1 ]
机构
[1] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361024, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Lie bialgebras; Yang-Baxter equation; the Lie algebra; WITT;
D O I
10.3390/sym15010239
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is interesting to consider the Lie bialgebra structures on the Lie algebra pound related to the Virasoro algebra. In this paper, the Lie bialgebras on are investigated by computing Der( pound, pound circle times pound ). It is proved that all such Lie bialgebras are triangular coboundary, and the first cohomology group H1( pound, pound circle times pound ) is trivial.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Loop Schrodinger-Virasoro Lie conformal algebra
    Chen, Haibo
    Han, Jianzhi
    Su, Yucai
    Xu, Ying
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
  • [42] Loop Heisenberg-Virasoro Lie conformal algebra
    Fan, Guangzhe
    Su, Yucai
    Wu, Henan
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [43] The Virasoro Algebra and Some Exceptional Lie and Finite Groups
    Tuite, Michael P.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [44] Bounded length 3 representations of the Virasoro Lie algebra
    Conley, CH
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (12) : 609 - 628
  • [45] UNITARY REPRESENTATIONS FOR THE SCHRODINGER-VIRASORO LIE ALGEBRA
    Zhang, Xiufu
    Tan, Shaobin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (01)
  • [46] Quantization of Schrödinger-Virasoro Lie algebra
    Yucai Su
    Lamei Yuan
    Frontiers of Mathematics in China, 2010, 5 : 701 - 715
  • [47] Dual Lie Bialgebra Structures of W-algebra W(2, 2) Type
    Guang Ai SONG
    Yu Cai SU
    Xiao Qing YUE
    Acta Mathematica Sinica,English Series, 2019, (10) : 1696 - 1714
  • [48] Biderivations of the extended Schrodinger-Virasoro Lie algebra
    Huang, Zhongxian
    AIMS MATHEMATICS, 2023, 8 (12): : 28808 - 28817
  • [49] Post-Lie Algebra Structures on the Witt Algebra
    Xiaomin Tang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 3427 - 3451
  • [50] Post-Lie Algebra Structures on the Witt Algebra
    Tang, Xiaomin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3427 - 3451