UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area

被引:2
|
作者
de Andrade, Oto Barbosa [1 ]
Montenegro, Abelardo Antonio de Assuncao [1 ]
Neto, Moises Alves da Silva [1 ]
de Sousa, Lizandra de Barros [1 ]
Almeida, Thayna Alice Brito [1 ]
de Lima, Joao Luis Mendes Pedroso [2 ]
de Carvalho, Ailton Alves [3 ]
da Silva, Marcos Vinicius [1 ]
de Medeiros, Victor Wanderley Costa [4 ]
Soares, Rodrigo Gabriel Ferreira [4 ]
da Silva, Thieres George Freire [1 ,3 ]
Vilar, Barbara Pinto [5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Agr Engn, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[2] Univ Coimbra, Fac Sci & Technol, MARE Marine & Environm Sci Ctr, Dept Civil Engn,ARNET Aquatic Res Network, Rua Luis Reis Santos,Polo II, P-3030788 Coimbra, Portugal
[3] Univ Fed Rural Pernambuco, Acad Unit Serra Talhada, Ave Gregorio Ferraz Nogueira, BR-56909535 Serra Talhada, PE, Brazil
[4] Univ Fed Rural Pernambuco, Dept Stat & Informat, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[5] TPF Engn, BR-51011530 Recife, PE, Brazil
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
crop classification; multispectral bands; RGB bands; machine learning; VEGETATION INDEXES;
D O I
10.3390/agriengineering6010031
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
  • [41] Machine Learning-Based Processing of Multispectral and RGB UAV Imagery for the Multitemporal Monitoring of Vineyard Water Status
    Lopez-Garcia, Patricia
    Intrigliolo, Diego
    Moreno, Miguel A.
    Martinez-Moreno, Alejandro
    Fernando Ortega, Jose
    Pilar Perez-Alvarez, Eva
    Ballesteros, Rocio
    AGRONOMY-BASEL, 2022, 12 (09):
  • [42] Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images
    Guo, Yahui
    Xiao, Yi
    Hao, Fanghua
    Zhang, Xuan
    Chen, Jiahao
    de Beurs, Kirsten
    He, Yuhong
    Fu, Yongshuo H.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [43] Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms
    Wu, Dewei
    Yu, Linfeng
    Yu, Run
    Zhou, Quan
    Li, Jiaxing
    Zhang, Xudong
    Ren, Lili
    Luo, Youqing
    REMOTE SENSING, 2023, 15 (02)
  • [44] Deep-Learning-Based Multispectral Image Reconstruction from Single Natural Color RGB Image-Enhancing UAV-Based Phenotyping
    Zhao, Jiangsan
    Kumar, Ajay
    Banoth, Balaji Naik
    Marathi, Balram
    Rajalakshmi, Pachamuthu
    Rewald, Boris
    Ninomiya, Seishi
    Guo, Wei
    REMOTE SENSING, 2022, 14 (05)
  • [45] Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery
    Yu, Run
    Luo, Youqing
    Zhou, Quan
    Zhang, Xudong
    Wu, Dewei
    Ren, Lili
    FOREST ECOLOGY AND MANAGEMENT, 2021, 497
  • [46] Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data
    Mia, Md. Suruj
    Tanabe, Ryoya
    Habibi, Luthfan Nur
    Hashimoto, Naoyuki
    Homma, Koki
    Maki, Masayasu
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    REMOTE SENSING, 2023, 15 (10)
  • [47] Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning
    Yang, Yuanzheng
    Meng, Zhouju
    Zu, Jiaxing
    Cai, Wenhua
    Wang, Jiali
    Su, Hongxin
    Yang, Jian
    REMOTE SENSING, 2024, 16 (16)
  • [48] A Machine-Learning Approach to Intertidal Mudflat Mapping Combining Multispectral Reflectance and Geomorphology from UAV-Based Monitoring
    Brunier, Guillaume
    Oiry, Simon
    Lachaussee, Nicolas
    Barille, Laurent
    Le Fouest, Vincent
    Meleder, Vona
    REMOTE SENSING, 2022, 14 (22)
  • [49] Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning
    Dhakal, Rakshya
    Maimaitijiang, Maitiniyazi
    Chang, Jiyul
    Caffe, Melanie
    SENSORS, 2023, 23 (24)
  • [50] Automatic wheat ear counting using machine learning based on RGB UAV imagery
    Fernandez-Gallego, Jose A.
    Lootens, Peter
    Borra-Serrano, Irene
    Derycke, Veerle
    Haesaert, Geert
    Roldan-Ruiz, Isabel
    Araus, Jose L.
    Kefauver, Shawn C.
    PLANT JOURNAL, 2020, 103 (04): : 1603 - 1613