UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area

被引:2
|
作者
de Andrade, Oto Barbosa [1 ]
Montenegro, Abelardo Antonio de Assuncao [1 ]
Neto, Moises Alves da Silva [1 ]
de Sousa, Lizandra de Barros [1 ]
Almeida, Thayna Alice Brito [1 ]
de Lima, Joao Luis Mendes Pedroso [2 ]
de Carvalho, Ailton Alves [3 ]
da Silva, Marcos Vinicius [1 ]
de Medeiros, Victor Wanderley Costa [4 ]
Soares, Rodrigo Gabriel Ferreira [4 ]
da Silva, Thieres George Freire [1 ,3 ]
Vilar, Barbara Pinto [5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Agr Engn, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[2] Univ Coimbra, Fac Sci & Technol, MARE Marine & Environm Sci Ctr, Dept Civil Engn,ARNET Aquatic Res Network, Rua Luis Reis Santos,Polo II, P-3030788 Coimbra, Portugal
[3] Univ Fed Rural Pernambuco, Acad Unit Serra Talhada, Ave Gregorio Ferraz Nogueira, BR-56909535 Serra Talhada, PE, Brazil
[4] Univ Fed Rural Pernambuco, Dept Stat & Informat, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[5] TPF Engn, BR-51011530 Recife, PE, Brazil
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
crop classification; multispectral bands; RGB bands; machine learning; VEGETATION INDEXES;
D O I
10.3390/agriengineering6010031
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
  • [1] Wildfire Burnt Area Severity Classification from UAV-Based RGB and Multispectral Imagery
    Simes, Tomas
    Padua, Luis
    Moutinho, Alexandra
    REMOTE SENSING, 2024, 16 (01)
  • [2] Classification of Maize Lodging Extents Using Deep Learning Algorithms by UAV-Based RGB and Multispectral Images
    Yang, Xin
    Gao, Shichen
    Sun, Qian
    Gu, Xiaohe
    Chen, Tianen
    Zhou, Jingping
    Pan, Yuchun
    AGRICULTURE-BASEL, 2022, 12 (07):
  • [3] Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing
    Wijayanto, Arif K.
    Junaedi, Ahmad
    Sujaswara, Azwar A.
    Khamid, Miftakhul B. R.
    Prasetyo, Lilik B.
    Hongo, Chiharu
    Kuze, Hiroaki
    AGRIENGINEERING, 2023, 5 (04): : 2000 - 2019
  • [4] Estimation of Fv/Fm in Spring Wheat Using UAV-Based Multispectral and RGB Imagery with Multiple Machine Learning Methods
    Wu, Qiang
    Zhang, Yongping
    Xie, Min
    Zhao, Zhiwei
    Yang, Lei
    Liu, Jie
    Hou, Dingyi
    AGRONOMY-BASEL, 2023, 13 (04):
  • [5] Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
    Zhao, Xiyong
    Li, Yanzhou
    Chen, Yongli
    Qiao, Xi
    Qian, Wanqiang
    DRONES, 2023, 7 (01)
  • [6] IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3462 - 3465
  • [7] Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery
    Wang, Hongquan
    Singh, Keshav D.
    Poudel, Hari P.
    Natarajan, Manoj
    Ravichandran, Prabahar
    Eisenreich, Brandon
    SENSORS, 2024, 24 (17)
  • [8] Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery
    Dobosz, Barbara
    Gozdowski, Dariusz
    Koronczok, Jerzy
    Zukovskis, Jan
    Wojcik-Gront, Elzbieta
    AGRICULTURE-BASEL, 2023, 13 (08):
  • [9] Vineyard classification using OBIA on UAV-based RGB and multispectral data: A case study in different wine regions
    Padua, Luis
    Matese, Alessando
    Di Gennaro, Salvatore Filippo
    Morais, Raul
    Peres, Emanuel
    Sousa, Joaquim J.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 196
  • [10] BANANA REIGNS WILT BASED ON MACHINE LEARNING AND UAV-BASED MULTISPECTRAL IMAGERY
    Nguyen, Quoc-Huy
    Du, Quan Vu Viet
    Pham, Viet Thanh
    Vuong, Hong Nhat
    Nguyen, Van Hong
    Sang, Tran Van
    Petrisor, Alexandru-Ionut
    GEOGRAPHIA TECHNICA, 2025, 20 (01): : 329 - 345