Image inpainting based on double joint predictive filtering and Wasserstein generative adversarial networks

被引:0
|
作者
Liu, Yuanchen [1 ]
Pan, Zhongliang [1 ]
机构
[1] South China Normal Univ, Sch Elect & Informat Engn, Foshan, Peoples R China
关键词
image inpainting; image-level predictive filtering; deep feature-level predictive filtering; Wasserstein GAN; attention;
D O I
10.1117/1.JEI.32.6.063008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image inpainting is promising but challenging in computer vision tasks; it aims to fill in missing regions of corrupted images with semantically sensible content. By utilizing generative adversarial networks (GAN), state-of-the-art methods have achieved great improvements, but the ordinary GAN generally suffers from difficulties in training and unstable gradients, leading to unsatisfactory inpainting results. Image-level predictive filtering is a widely used restoration method that adaptively predicts the weights of pixels around a target pixel and then linearly combines these pixels to generate the image, but it cannot fill larger missing regions. Thus, we extend image-level predictive filtering to the deep feature level through an encoder-decoder network and embed adaptive channel attention and spatial attention modules in the encoder network. We use Wasserstein GAN instead of normal GAN due to its superior properties and then combine it with image-level predictive filtering and deep feature-level predictive filtering, which ultimately leads to a significant improvement in image inpainting. We validate our method on two public datasets: CelebA-HQ and Places2. Our method demonstrates good performance across four metrics: peak signal-to-noise ratio, L1, structural similarity index measure, and learned perceptual image patch similarity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Gait recognition based on Wasserstein generating adversarial image inpainting network
    Xia Li-min
    Wang Hao
    Guo Wei-ting
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (10) : 2759 - 2770
  • [32] Automatic Image Annotation Using Improved Wasserstein Generative Adversarial Networks
    Liu, Jian
    Wu, Weisheng
    IAENG International Journal of Computer Science, 2021, 48 (03) : 1 - 7
  • [33] Conditional Wasserstein Generative Adversarial Networks for Rebalancing Iris Image Datasets
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Harfiya, Latifa Nabila
    Chang, Ching-Chun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (09) : 1450 - 1458
  • [34] Wasserstein Generative Adversarial Networks for Realistic Traffic Sign Image Generation
    Dewi, Christine
    Chen, Rung-Ching
    Liu, Yan-Ting
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 479 - 493
  • [35] Image Multi-Inpainting via Progressive Generative Adversarial Networks
    Cai, Jiayin
    Li, Changlin
    Tao, Xin
    Tai, Yu-Wing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 977 - 986
  • [36] Semantic face image inpainting based on Generative Adversarial Network
    Zhang, Heshu
    Li, Tao
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 530 - 535
  • [37] ISRnet: Compressed Image Inpainting Based on Generative Adversarial Network
    Huang, Junjian
    Zheng, Mao
    Li, Zhizhang
    He, Xing
    Wen, Shiping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [38] Face Image Inpainting Algorithm Based on Generative Adversarial Network
    Miao, Yalin
    Jia, Huanhuan
    Liu, Xuemin
    Zhang, Yang
    Zhao, Liyi
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 282 - 286
  • [39] Masked Image Inpainting Algorithm Based on Generative Adversarial Nets
    Cao Z.-Y.
    Niu S.-Z.
    Zhang J.-W.
    2018, Beijing University of Posts and Telecommunications (41): : 81 - 86
  • [40] Wasserstein generative adversarial networks for topology optimization
    Pereira, Lucas
    Driemeier, Larissa
    STRUCTURES, 2024, 67