An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts

被引:6
|
作者
Yang, Fan [1 ]
Huo, Junzhou [1 ]
Cheng, Zhang [1 ]
Chen, Hao [1 ]
Shi, Yiting [1 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
mask R-CNN; micro-crack; target detection; metal structural parts; deformable convolution kernel; attention mechanism;
D O I
10.3390/s24010062
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Micro-crack detection is an essential task in critical equipment health monitoring. Accurate and timely detection of micro-cracks can ensure the healthy and stable service of equipment. Aiming at improving the low accuracy of the conventional target detection model during the task of detecting micro-cracks on the surface of metal structural parts, this paper built a micro-cracks dataset and explored a detection performance optimization method based on Mask R-CNN. Firstly, we improved the original FPN structure, adding a bottom-up feature fusion path to enhance the information utilization rate of the underlying feature layer. Secondly, we added the methods of deformable convolution kernel and attention mechanism to ResNet, which can improve the efficiency of feature extraction. Lastly, we modified the original loss function to optimize the network training effect and model convergence rate. The ablation comparison experiments shows that all the improvement schemes proposed in this paper have improved the performance of the original Mask R-CNN. The integration of all the improvement schemes can produce the most significant performance improvement effects in recognition, classification, and positioning simultaneously, thus proving the rationality and feasibility of the improved scheme in this paper.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Instance segmentation of apple flowers using the improved mask R-CNN model
    Tian, Yunong
    Yang, Guodong
    Wang, Zhe
    Li, En
    Liang, Zize
    BIOSYSTEMS ENGINEERING, 2020, 193 : 264 - 278
  • [42] Segmentation method for plant leaves using an improved Mask R-CNN model
    Yuan S.
    Tang H.
    Guo Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (01): : 212 - 220
  • [43] Intelligent Welding Defect Detection Model on Improved R-CNN
    Chen, Yongbin
    Wang, Jingran
    Wang, Guitang
    IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 9235 - 9244
  • [44] Surface defect detection algorithm of magnetic tile based on Mask R-CNN
    Guo L.
    Duan H.
    Zhou W.
    Tong G.
    Wu J.
    Ou X.
    Li W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (05): : 1393 - 1400
  • [45] Pavement Sealed Crack Detection Method Based on Improved Faster R-CNN
    Sun Z.
    Pei L.
    Li W.
    Hao X.
    Chen Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (02): : 84 - 93
  • [46] Detection of Parking Slots Based on Mask R-CNN
    Jiang, Shaokang
    Jiang, Haobin
    Ma, Shidian
    Jiang, Zhongxu
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [47] Double Mask R-CNN for Pedestrian Detection in a Crowd
    Liu, Congqiang
    Wang, Haosen
    Liu, Chunjian
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [48] Object detection based on RGC mask R-CNN
    Wu, Minghu
    Yue, Hanhui
    Wang, Juan
    Huang, Yongxi
    Liu, Min
    Jiang, Yuhan
    Ke, Cong
    Zeng, Cheng
    IET IMAGE PROCESSING, 2020, 14 (08) : 1502 - 1508
  • [49] INSHORE SHIP DETECTION BASED ON MASK R-CNN
    Nie, Shanlan
    Jiang, Zhiguo
    Zhang, Haopeng
    Cai, Bowen
    Yao, Yuan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 693 - 696
  • [50] Coffee Bean Detection Using Mask R-CNN
    Diloy, Regina Liza C.
    Juana, Ma. Chloe M. Sta.
    Yumang, Analyn N.
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 324 - 327