A shale gas production prediction model based on masked convolutional neural network

被引:15
|
作者
Zhou, Wei [1 ]
Li, Xiangchengzhen [1 ]
Qi, ZhongLi [1 ]
Zhao, HaiHang [1 ,2 ]
Yi, Jun [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Intelligent Technol & Engn, Chongqing 401331, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale gas production prediction; CNN; Mask mechanism; Data analysis; ARIMA;
D O I
10.1016/j.apenergy.2023.122092
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Shale gas production prediction is of great significance for shale gas exploration and development, as it can optimize exploration strategies and guide adjustments to production parameters for both new and existing wells. However, the dynamic production characteristics of shale gas wells under the influence of multiple factors such as reservoirs, engineering, and production, exhibit complex nonlinear and non-stationary features, leading to low accuracy in predicting shale gas production. To address this issue, a novel masked convolutional neural network (M-CNN) based on masked autoencoders (MAE) is proposed for shale gas production prediction. First, high-dimensional shale gas production data are transformed into images with unknown information using an encoding structure, thereby converting the regression task into images generation task. Then, convolutional neural network is used for image restoration prediction, and the corresponding numerical values at the image positions are extracted as shale gas production prediction results. Specifically, dilated convolution and multi-scale residual structure (MSRS) are developed to improve the feature representation capability of the network. Meanwhile, convolutional block attention module (CBAM) is adopted to enhance the feature extraction ability of the M-CNN. The performance of our method is validated experimentally on shale gas production data of Changning (CN) block in China. The average RMSE, MRE, and R2 on the test sets are 0.211 (104 m3/d), 10.9%, and 0.906, respectively, which is much lower than the traditional time series models. Experimental results demonstrate the effectiveness and superiority of the proposed M-CNN method for shale gas production prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Development of Convolutional Neural Network Model for Crop Yield Prediction
    Ghildiyal, Shivangi
    Deogaonkar, Anant
    Bhandari, Narendra Singh
    Bisht, Mamta
    Vichoray, Chandan
    Naval, Naveen
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1130 - 1135
  • [42] Prediction of Radiation Pneumonitis With Dose Distribution: A Convolutional Neural Network (CNN) Based Model
    Liang, Bin
    Van, Yuan
    Chen, Xinyuan
    Yan, Hui
    Yan, Lingling
    Zhang, Tao
    Zhou, Zongmei
    Wang, Lvhua
    Dai, Jianrong
    FRONTIERS IN ONCOLOGY, 2020, 9
  • [43] A fast prediction model of blade flutter in turbomachinery based on graph convolutional neural network
    Liu, Yupeng
    Li, Yunzhu
    Li, Liangliang
    Xie, Yonghui
    Zhang, Di
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 148
  • [44] Prediction of amorphous forming ability based on artificial neural network and convolutional neural network
    Lu, Fei
    Liang, Yongchao
    Wang, Xingying
    Gao, Tinghong
    Chen, Qian
    Liu, Yunchun
    Zhou, Yu
    Yuan, Yongkai
    Liu, Yutao
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [45] Seismic Prediction Method of Shale Reservoir Brittleness Index Based on the BP Neural Network for Improving Shale Gas Extraction Efficiency
    Zhang, Xuejuan
    She, Haiyan
    Zhang, Lei
    Li, Ruolin
    Feng, Jiayang
    Liu, Ruhao
    Wang, Xinrui
    ENERGIES, 2024, 17 (18)
  • [46] Predicting production-rate using wellhead pressure for shale gas well based on Temporal Convolutional Network
    Li, Daolun
    Wang, Zhiqiang
    Zha, Wenshu
    Wang, Jianjun
    He, Yong
    Huang, Xiaoqing
    Du, Yue
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 216
  • [47] Structure analysis of shale and prediction of shear wave velocity based on petrophysical model and neural network
    ZHU Hai
    XU Cong
    LI Peng
    LIU Cai
    GlobalGeology, 2020, 23 (03) : 155 - 165
  • [48] A Network Intrusion Detection Model Based on Convolutional Neural Network
    Tao, Wenwei
    Zhang, Wenzhe
    Hu, Chao
    Hu, Chaohui
    SECURITY WITH INTELLIGENT COMPUTING AND BIG-DATA SERVICES, 2020, 895 : 771 - 783
  • [49] Reaction diffusion system prediction based on convolutional neural network
    Li, Angran
    Chen, Ruijia
    Farimani, Amir Barati
    Zhang, Yongjie Jessica
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [50] Prediction of Prospecting Target Based on ResNet Convolutional Neural Network
    Gao, Le
    Huang, Yongjie
    Zhang, Xin
    Liu, Qiyuan
    Chen, Zequn
    APPLIED SCIENCES-BASEL, 2022, 12 (22):