Removal of antibiotic resistant bacteria and genes by nanoscale zero-valent iron activated persulfate: Implication for the contribution of pH decrease

被引:24
|
作者
Zhou, Chun-shuang [1 ]
Cao, Guang-li [1 ]
Wu, Xiu-Kun [1 ]
Liu, Bing-feng [1 ]
Qi, Qing-Yue [1 ]
Ma, Wan -Li [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
基金
黑龙江省自然科学基金;
关键词
nZVI activated persulfate; ARB; ARGs; Advanced oxidation process; pH value; EFFICIENT DEGRADATION; INACTIVATION; DNA; TRANSFORMATION; NANOPARTICLES; CONTAMINANTS; MECHANISM; WATER; UV;
D O I
10.1016/j.jhazmat.2023.131343
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The mechanism of removing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by persulfate was attributed to the generation of reactive oxygen species (ROS). However, the potential contribution of decreased pH in persulfate system to ARB and ARGs removal has rarely been reported. Here, the efficiency and mechanism of removing ARB and ARGs by nanoscale zero-valent iron activated persulfate (nZVI/PS) were investigated. Results showed that the ARB (2 x 10(8) CFU/mL) could be completely inactivated within 5 min, and the removal efficiencies of sul1 and intI1 were 98.95% and 99.64% by nZVI/20 mM PS, respectively. Investigation of mechanism revealed that hydroxyl radicals was the dominant ROS of nZVI/PS in removing ARB and ARGs. Importantly, the pH of nZVI/PS system was greatly decreased, even to 2.9 in nZVI/20 mM PS system. Impressively, when the pH of the bacterial suspension was adjusted to 2.9, the removal efficiency of ARB, sul1 and intI1 were 60.33%, 73.76% and 71.51% within 30 min, respectively. Further excitation-emission-matrix analysis confirmed that decreased pH contributed to ARB damage. The above results on the effect of pH indicated that the decreased pH of nZVI/PS system also made an important contribution for the removal of ARB and ARGs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature
    Deng, Jing
    Xu, Mengyuan
    Chen, Yijing
    Li, Jun
    Qiu, Chungen
    Li, Xueyan
    Zhou, Shiqing
    Chemical Engineering Journal, 2020, 366 : 491 - 503
  • [22] Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron
    Jing Cai
    Yan Zhang
    Environmental Science and Pollution Research, 2022, 29 : 8281 - 8293
  • [23] Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron
    Cai, Jing
    Zhang, Yan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (06) : 8281 - 8293
  • [24] Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA
    Dong, Haoran
    He, Qi
    Zeng, Guangming
    Tang, Lin
    Zhang, Lihua
    Xie, Yankai
    Zeng, Yalan
    Zhao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 410 - 418
  • [25] Aqueous phosphate removal using nanoscale zero-valent iron
    Almeelbi, Talal
    Bezbaruah, Achintya
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (07)
  • [26] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [27] Insight into the removal of graphene oxide by nanoscale zero-valent iron
    Zhang, Zehua
    Liu, Xia
    Wu, Jin
    Ren, Xuemei
    Li, Jiaxing
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 314
  • [28] Degradation of p-chloroaniline by persulfate activated with zero-valent iron
    Hussain, Imtyaz
    Zhang, Yongqing
    Huang, Shaobin
    Du, Xiaozhe
    CHEMICAL ENGINEERING JOURNAL, 2012, 203 : 269 - 276
  • [29] Aqueous phosphate removal using nanoscale zero-valent iron
    Talal Almeelbi
    Achintya Bezbaruah
    Journal of Nanoparticle Research, 2012, 14
  • [30] Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate
    Qu, Guangzhou
    Chu, Rongjie
    Wang, Hui
    Wang, Tiecheng
    Zhang, Zengqiang
    Qiang, Hong
    Liang, Dongli
    Hu, Shibin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (32) : 40826 - 40836