SSIR: Spatial shuffle multi-head self-attention for Single Image Super-Resolution

被引:14
|
作者
Zhao, Liangliang [1 ,2 ]
Gao, Junyu [1 ,2 ,3 ]
Deng, Donghu [1 ,2 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Intelligent Interact & Applicat, Xian 710072, Shaanxi, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
关键词
Single Image Super-Resolution; Long-range attention; Vision transformer;
D O I
10.1016/j.patcog.2023.110195
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Benefiting from the development of deep convolutional neural networks, CNN-based single-image super-resolution methods have achieved remarkable reconstruction results. However, the limited perceptual field of the convolutional kernel and the use of static weights in the inference process limit the performance of CNN-based methods. Recently, a few vision transformer-based image super-resolution methods have achieved excellent performance compared to CNN-based methods. These methods contain many parameters and require vast amounts of GPU memory for training. In this paper, we propose a spatial shuffle multi-head self-attention for single-image super-resolution that can significantly model long-range pixel dependencies without additional computational consumption. A local perception module is also proposed to combine convolutional neural networks' local connectivity and translational invariance. Reconstruction results on five popular benchmarks show that the proposed method outperforms existing methods in both reconstruction accuracy and visual performance. The proposed method matches the performance of transformed-based methods but requires an inferior number of transformer blocks, which reduces the number of parameters by 40%, GPU memory by 30%, and inference time by 30% compared to transformer-based methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Lightweight Single Image Super-Resolution With Multi-Scale Spatial Attention Networks
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE ACCESS, 2020, 8 : 35383 - 35391
  • [22] Neural News Recommendation with Multi-Head Self-Attention
    Wu, Chuhan
    Wu, Fangzhao
    Ge, Suyu
    Qi, Tao
    Huang, Yongfeng
    Xie, Xing
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 6389 - 6394
  • [23] Multi-Window Fusion Spatial-Frequency Joint Self-Attention for Remote-Sensing Image Super-Resolution
    Li, Ziang
    Lu, Wen
    Wang, Zhaoyang
    Hu, Jian
    Zhang, Zeming
    He, Lihuo
    REMOTE SENSING, 2024, 16 (19)
  • [24] Image Super-Resolution Reconstruction Method Based on Self-Attention Deep Network
    Chen Zihan
    Wu Haobo
    Pei Haodong
    Chen Rong
    Hu Jiaxin
    Shi Hengtong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (04)
  • [25] Densely Connected Transformer With Linear Self-Attention for Lightweight Image Super-Resolution
    Zeng, Kun
    Lin, Hanjiang
    Yan, Zhiqiang
    Fang, Jinsheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [26] FNSAM: Image super-resolution using a feedback network with self-attention mechanism
    Huang, Yu
    Wang, Wenqian
    Li, Min
    TECHNOLOGY AND HEALTH CARE, 2023, 31 : S383 - S395
  • [27] Extreme Low Resolution Action Recognition with Spatial-Temporal Multi-Head Self-Attention and Knowledge Distillation
    Purwanto, Didik
    Pramono, Rizard Renanda Adhi
    Chen, Yie-Tarng
    Fang, Wen-Hsien
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 961 - 969
  • [28] Self-attention learning network for face super-resolution
    Zeng, Kangli
    Wang, Zhongyuan
    Lu, Tao
    Chen, Jianyu
    Wang, Jiaming
    Xiong, Zixiang
    NEURAL NETWORKS, 2023, 160 : 164 - 174
  • [29] Multi-scale feature learning network with channel self-attention for remote sensing single-image super-resolution
    Wang, Xueqin
    Jiang, Wenzong
    Zhao, Lifei
    Liu, Baodi
    Wang, Yanjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (18) : 6669 - 6688
  • [30] Masked multi-head self-attention for causal speech enhancement
    Nicolson, Aaron
    Paliwal, Kuldip K.
    SPEECH COMMUNICATION, 2020, 125 : 80 - 96