Data-driven flow-map models for data-efficient discovery of dynamics and fast uncertainty quantification of biological and biochemical systems

被引:3
|
作者
Makrygiorgos, Georgios [1 ,2 ]
Berliner, Aaron J. [1 ,3 ]
Shi, Fengzhe [1 ,2 ]
Clark, Douglas S. [1 ,2 ]
Arkin, Adam P. [1 ,3 ]
Mesbah, Ali [1 ,2 ]
机构
[1] Ctr Utilizat Biol Engn Space CUBES, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA USA
关键词
discovery of nonlinear dynamics; flow-map decomposition; polynomial chaos Kriging; probabilistic surrogate modeling; uncertainty quantification; POLYNOMIAL CHAOS EXPANSIONS; SENSITIVITY-ANALYSIS; GOVERNING EQUATIONS; EXPERIMENT DESIGN; SURROGATE MODELS; IDENTIFICATION; APPROXIMATION; DECOMPOSITION; OPTIMIZATION; ANODE;
D O I
10.1002/bit.28295
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a coculture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems.
引用
收藏
页码:803 / 818
页数:16
相关论文
共 43 条
  • [21] Data-driven uncertainty quantification for predictive flow and transport modeling using support vector machines
    He, Jiachuan
    Mattis, Steven A.
    Butler, Troy D.
    Dawson, Clint N.
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (04) : 631 - 645
  • [22] Data-driven uncertainty quantification for predictive flow and transport modeling using support vector machines
    Jiachuan He
    Steven A. Mattis
    Troy D. Butler
    Clint N. Dawson
    Computational Geosciences, 2019, 23 : 631 - 645
  • [23] Data-driven model-based flow measurement uncertainty quantification for building central cooling systems using a probabilistic approach
    Sun, Shaobo
    Shan, Kui
    Wang, Shengwei
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2023, 29 (03) : 297 - 310
  • [24] Data-driven acceleration of multiscale methods for uncertainty quantification: application in transient multiphase flow in porous media
    Chan, Shing
    Elsheikh, Ahmed H.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2019, 11 (01)
  • [25] Data-driven acceleration of multiscale methods for uncertainty quantification: application in transient multiphase flow in porous media
    Shing Chan
    Ahmed H. Elsheikh
    GEM - International Journal on Geomathematics, 2020, 11
  • [26] Uncertainty quantification of bladed disc systems using data driven stochastic reduced order models
    Kumar, Rahul
    Ali, Shaikh Faruque
    Jeyaraman, Sankarkumar
    Gupta, Sayan
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 190
  • [27] Data-driven surrogate models for LTI systems via saddle-point dynamics
    Martin, Tim
    Koch, Anne
    Allgoewer, Frank
    IFAC PAPERSONLINE, 2020, 53 (02): : 953 - 958
  • [28] Approaches for unsupervised identification of data-driven models for flow forecasting in urban drainage systems
    Johannesson, Ari
    Vezzaro, Luca
    Mikkelsen, Peter Steen
    Lowe, Roland
    JOURNAL OF HYDROINFORMATICS, 2021, 23 (06) : 1368 - 1381
  • [29] Data-Driven Fast Uncertainty Assessment of Distribution Systems With Correlated EV Charging Demand and Renewable Generation
    Jiang, Yazhou
    Ortmeyer, Thomas
    Fan, Miao
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (03) : 1446 - 1456
  • [30] Distributed sequential optimal power flow under uncertainty in power distribution systems: A data-driven approach
    Tsaousoglou, Georgios
    Ellinas, Petros
    Giraldo, Juan S.
    Varvarigos, Emmanouel
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 235