An ensemble Monte Carlo HDG method for parabolic PDEs with random coefficients

被引:3
|
作者
Li, Meng [1 ]
Luo, Xianbing [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic PDEs; random coefficients; HDG method; ensemble; Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; ERROR ANALYSIS; ALGORITHM; GALERKIN; SCHEME; GMRES;
D O I
10.1080/00207160.2022.2119082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Monte Carlo, ensemble and hybrid discontinuous Galerkin method (EMC-HDG) to numerically solve parabolic partial differential equations (PDEs) with random coefficients. The proposed method reduces the computational cost and the storage requirement by solving multiple linear systems with a common coefficient matrix. Error analysis shows the proposed method is first-order accurate in time and optimal L-2 convergence order in physical space. In the end, several numerical experiments are presented to verify the theoretical results.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 50 条
  • [31] MONTE CARLO METHOD FOR SOLVING A PARABOLIC PROBLEM
    Tian, Yi
    Yan, Zai-Zai
    THERMAL SCIENCE, 2016, 20 (03): : 933 - 937
  • [32] GENERATION OF TRIANGULATED RANDOM SURFACES BY THE MONTE-CARLO METHOD IN THE GRAND CANONICAL ENSEMBLE
    ZMUSHKO, VV
    MIGDAL, AA
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1987, 45 (05): : 929 - 932
  • [33] MICROCANONICAL ENSEMBLE MONTE-CARLO METHOD
    RAY, JR
    PHYSICAL REVIEW A, 1991, 44 (06): : 4061 - 4064
  • [34] Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors
    Schwab, Christoph
    Stein, Andreas
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (03): : 1574 - 1627
  • [35] A MULTIMODES MONTE CARLO FINITE ELEMENT METHOD FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
    Feng, Xiaobing
    Lin, Junshan
    Lorton, Cody
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (05) : 429 - 443
  • [36] An HDG method for distributed control of convection diffusion PDEs
    Chen, Gang
    Hu, Weiwei
    Shen, Jiguang
    Singler, John R.
    Zhang, Yangwen
    Zheng, Xiaobo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 643 - 661
  • [37] Microcanonical ensemble Monte Carlo method for discrete systems
    Ray, JR
    Frelechoz, C
    PHYSICAL REVIEW E, 1996, 53 (04): : 3402 - 3407
  • [38] The explicit bonding reaction ensemble Monte Carlo method
    Blanco, Pablo M.
    Kosovan, Peter
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (09):
  • [39] MONTE-CARLO METHOD FOR RANDOM SURFACES
    BERG, B
    BILLOIRE, A
    FOERSTER, D
    NUCLEAR PHYSICS B, 1985, 251 (5-6) : 665 - 675
  • [40] A New Method for the Calculation of Diffusion Coefficients with Monte Carlo
    Dorval, Eric
    SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,