An ensemble Monte Carlo HDG method for parabolic PDEs with random coefficients

被引:3
|
作者
Li, Meng [1 ]
Luo, Xianbing [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic PDEs; random coefficients; HDG method; ensemble; Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; ERROR ANALYSIS; ALGORITHM; GALERKIN; SCHEME; GMRES;
D O I
10.1080/00207160.2022.2119082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Monte Carlo, ensemble and hybrid discontinuous Galerkin method (EMC-HDG) to numerically solve parabolic partial differential equations (PDEs) with random coefficients. The proposed method reduces the computational cost and the storage requirement by solving multiple linear systems with a common coefficient matrix. Error analysis shows the proposed method is first-order accurate in time and optimal L-2 convergence order in physical space. In the end, several numerical experiments are presented to verify the theoretical results.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 50 条
  • [1] A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR RANDOM PARABOLIC PDEs
    Luo, Yan
    Wang, Zhu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A622 - A642
  • [2] A Multiscale Multilevel Monte Carlo Method for Multiscale Elliptic PDEs with Random Coefficients
    Junlong Lyu
    Zhiwen Zhang
    CommunicationsinMathematicalResearch, 2020, 36 (02) : 154 - 192
  • [3] Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (01): : 174 - 202
  • [4] Interpolatory HDG Method for Parabolic Semilinear PDEs
    Bernardo Cockburn
    John R. Singler
    Yangwen Zhang
    Journal of Scientific Computing, 2019, 79 : 1777 - 1800
  • [5] Interpolatory HDG Method for Parabolic Semilinear PDEs
    Cockburn, Bernardo
    Singler, John R.
    Zhang, Yangwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1777 - 1800
  • [6] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [7] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [8] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [9] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [10] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492