OBJECT-CENTRIC VIDEO PREDICTION VIA DECOUPLING OF OBJECT DYNAMICS AND INTERACTIONS

被引:1
|
作者
Villar-Corrales, Angel [1 ]
Wahdan, Ismail [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Autonomous Intelligent Syst, Bonn, Germany
关键词
Object-centric video prediction; scene parsing; object-centric learning; future frame prediction; transformers;
D O I
10.1109/ICIP49359.2023.10222810
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework for object-centric video prediction, i.e., parsing a video sequence into objects, and modeling their dynamics and interactions in order to predict the future object states from which video frames are rendered. To facilitate the learning of meaningful spatio-temporal object representations and forecasting of their states, we propose two novel object-centric video prediction (OCVP) transformer modules, which decouple the processing of temporal dynamics and object interactions. We show how OCVP predictors outperform object-agnostic video prediction models on two different datasets. Furthermore, we observe that OCVP modules learn consistent and interpretable object representations. Animations and code to reproduce our results can be found in our project website(1).
引用
收藏
页码:570 / 574
页数:5
相关论文
共 50 条
  • [41] From Identities to Quantities: Introducing Items and Decoupling Points to Object-Centric Process Mining
    Graves, Nina
    Koren, Istvan
    Rafiei, Majid
    van der Aalst, Wil M. P.
    PROCESS MINING WORKSHOPS, ICPM 2023, 2024, 503 : 462 - 474
  • [42] Learning global object-centric representations via disentangled slot attention
    Chen, Tonglin
    Huang, Yinxuan
    Shen, Zhimeng
    Huang, Jinghao
    Li, Bin
    Xue, Xiangyang
    MACHINE LEARNING, 2025, 114 (02)
  • [43] Slot-VPS: Object-centric Representation Learning for Video Panoptic Segmentation
    Zhou, Yi
    Zhang, Hui
    Lee, Hana
    Sun, Shuyang
    Li, Pingjun
    Zhu, Yangguang
    Yoo, ByungIn
    Qi, Xiaojuan
    Han, Jae-Joon
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3083 - 3093
  • [44] OBJECT-CENTRIC AND MEMORY-GUIDED NORMALITY RECONSTRUCTION FOR VIDEO ANOMALY DETECTION
    Bergaoui, Khalil
    Naji, Yassine
    Setkov, Aleksandr
    Loesch, Angelique
    Gouiffes, Michele
    Audigier, Romaric
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2691 - 2695
  • [45] OSIN: Object-Centric Scene Inference Network for Unsupervised Video Anomaly Detection
    Liu, Yang
    Guo, Zhengliang
    Liu, Jing
    Li, Chengfang
    Song, Liang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 359 - 363
  • [46] Time-traveling object-centric breakpoints
    Bourcier, Valentin
    Costiou, Steven
    Santander, Maximilian Ignacio Willembrinck
    Vanegue, Adrien
    Etien, Anne
    JOURNAL OF COMPUTER LANGUAGES, 2024, 80
  • [47] Deep Object-Centric Policies for Autonomous Driving
    Wang, Dequan
    Devin, Coline
    Cai, Qi-Zhi
    Yu, Fisher
    Darrell, Trevor
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 8853 - 8859
  • [48] Taking an object-centric view on dynamic information with object flow analysis
    Lienhard, Adrian
    Ducasse, Stephane
    Giirba, Tudor
    COMPUTER LANGUAGES SYSTEMS & STRUCTURES, 2009, 35 (01) : 63 - 79
  • [49] TOTeM: Temporal Object Type Model for Object-Centric Process Mining
    Liss, Lukas
    Adams, Jan Niklas
    van der Aalst, Wil M. P.
    BUSINESS PROCESS MANAGEMENT FORUM, BPM 2024, 2024, 526 : 107 - 123
  • [50] Manifold geometric invariants and object-centric approach
    Jannson, TP
    APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION V, 2002, 4787 : 158 - 173