Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels

被引:8
|
作者
Li, Sha [1 ]
Haussener, Sophia [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Renewable Energy Sci & Engn, Stn 9, CH-1015 Lausanne, Switzerland
基金
欧盟地平线“2020”;
关键词
Sabatier reaction; Reverse water gas shift reaction; Photothermal catalysts; Thermodynamics; Heat and mass transfer; Reactor design and operation; Process optimization; GAS SHIFT REACTION; ENERGY-CONVERSION; SABATIER REACTION; SYNGAS PRODUCTION; METHANATION; REDUCTION; REACTOR; CH4; PHOTOREACTORS; FUNDAMENTALS;
D O I
10.1016/j.apenergy.2022.120617
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sunlight-powered catalytic conversion of CO2 and (green) H2 into fuels and chemicals via Sabatier and reverse water gas shift (RWGS) processes offers a promising solution to reduce greenhouse gas emissions and increase renewable energy utilization. The success of this approach relies on the development of efficient catalysts and reactors. Prior research on reactor design is based on fixed-bed concepts using conventional transition metal thermocatalysts that typically require high-temperature activation. The utilization of photothermal catalysts yields fast reaction kinetics and enhanced product selectivity at relatively low temperatures, and, therefore, requires new design and operational guidelines. A comprehensive steady-state model is described to assess the performance of solar-driven photothermal catalytic Sabatier and RWGS processes, with an emphasis on the development of a 1D heat and mass transfer model for a plate-shaped transparent flow reactor. The model allows for the prediction of the temperature profile, pressure drop and reaction extent along the reactor channel, CO2 and H2 conversion, total fuel yield, as well as system efficiency for a variety of design and operational choices. The effects of these parameters are strongly coupled, and a low packed bed porosity of 40% combined with high gas inlet pressure at 18-20 bar leads to both, high fuel yield and high system efficiency, for both the Sabatier and RWGS processes. The maximum system efficiency is predicted via simultaneous optimization of relevant variables within meaningful ranges while also respecting the practical temperature constraints of both the glass and catalysts. Compared with the baseline case, the optimized scenario achieves higher efficiencies of 26.3% (vs 6.7%) and 10.1% (vs 5.4%) for the Sabatier and RWGS processes, respectively, at 20 kW/m2 irradiance. The model also identifies optimal reactor conditions under different concentrated solar irradiance, thus offering design and operational guidelines for solar-driven catalytic conversion of CO2 and H2 processes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Reactor design for solar-driven photothermal catalytic CO2 reduction into fuels
    Wang, Jin
    Xuan, Yimin
    Zeng, Jia
    Zhu, Qibin
    Zhu, Zhonghui
    ENERGY CONVERSION AND MANAGEMENT, 2023, 281
  • [2] Solar-driven thermochemical conversion of H2O and CO2 into sustainable fuels
    Wei, Linyang
    Pan, Zhefei
    Shi, Xingyi
    Esan, Oladapo Christopher
    Li, Guojun
    Qi, Hong
    Wu, Qixing
    An, Liang
    ISCIENCE, 2023, 26 (11)
  • [3] Solar-driven photothermal catalytic CO2 conversion: a review
    Lougou, Bachirou Guene
    Geng, Bo-Xi
    Pan, Ru-Ming
    Wang, Wei
    Yan, Tian-Tian
    Li, Fang-Hua
    Zhang, Hao
    Djandja, Oraleou Sangue
    Shuai, Yong
    Tabatabaei, Meisam
    Sabi Takou, Daniel
    RARE METALS, 2024, 43 (07) : 2913 - 2939
  • [4] An Overview of Solar-Driven Photoelectrochemical CO2 Conversion to Chemical Fuels
    Tang, Bo
    Xiao, Fang-Xing
    ACS CATALYSIS, 2022, 12 (15): : 9023 - 9057
  • [5] The design of a solar-driven catalytic reactor for CO2 conversions
    Wei, Bo
    Fakhrai, Reza
    Saadatfar, Bahram
    Mohan, Gowtham
    Fransson, Torsten
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 2752 - 2761
  • [6] Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels
    He, Yiqiang
    Lei, Qiong
    Li, Chunguang
    Han, Yu
    Shi, Zhan
    Feng, Shouhua
    MATERIALS TODAY, 2021, 50 : 358 - 384
  • [7] Versatile Microreactor for Solar-Driven Photothermal Catalytic CO2 Reduction into Fuels
    Wang, Jin
    Xuan, Yimin
    Zhu, Qibin
    ENERGY & FUELS, 2025, 39 (06) : 3308 - 3318
  • [8] Catalytic CO2 conversion via solar-driven fluidized bed reactors
    Wei, Bo
    Fakhrai, Reza
    Saadatfar, Bahram
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2014, 9 (02) : 127 - 134
  • [9] Rational design and preparation of nanoheterostructures based on zinc titanate for solar-driven photocatalytic conversion of CO2 to valuable fuels
    Lu, Jiaxue
    Li, Deli
    Chai, Yao
    Li, Li
    Li, Meng
    Zhang, Yingying
    Liang, Jun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 256
  • [10] Photons to formate: Solar driven conversion of CO2 to solar fuels
    Pan, Hanqing
    Zou, Yan
    Heagy, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249