Motif Graph Neural Network

被引:8
|
作者
Chen, Xuexin [1 ]
Cai, Ruichu [2 ,3 ]
Fang, Yuan [4 ]
Wu, Min [5 ]
Li, Zijian [1 ]
Hao, Zhifeng [6 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Comp Sci, Guangdong Prov Key Lab Publ Finance & Taxat Big Da, Guangzhou 510006, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[4] Singapore Management Univ, Sch Comp & Informat Syst, Singapore 178902, Singapore
[5] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
[6] Shantou Univ, Coll Sci, Shantou 515063, Peoples R China
关键词
Graph neural network (GNN); graph representation; high-order structure; motif; COLORECTAL-CANCER;
D O I
10.1109/TNNLS.2023.3281716
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graphs can model complicated interactions between entities, which naturally emerge in many important applications. These applications can often be cast into standard graph learning tasks, in which a crucial step is to learn low-dimensional graph representations. Graph neural networks (GNNs) are currently the most popular model in graph embedding approaches. However, standard GNNs in the neighborhood aggregation paradigm suffer from limited discriminative power in distinguishing high-order graph structures as opposed to low-order structures. To capture high-order structures, researchers have resorted to motifs and developed motif-based GNNs. However, the existing motif-based GNNs still often suffer from less discriminative power on high-order structures. To overcome the above limitations, we propose motif GNN (MGNN), a novel framework to better capture high-order structures, hinging on our proposed motif redundancy minimization operator and injective motif combination. First, MGNN produces a set of node representations with respect to each motif. The next phase is our proposed redundancy minimization among motifs which compares the motifs with each other and distills the features unique to each motif. Finally, MGNN performs the updating of node representations by combining multiple representations from different motifs. In particular, to enhance the discriminative power, MGNN uses an injective function to combine the representations with respect to different motifs. We further show that our proposed architecture increases the expressive power of GNNs with a theoretical analysis. We demonstrate that MGNN outperforms state-of-the-art methods on seven public benchmarks on both the node classification and graph classification tasks.
引用
收藏
页码:14833 / 14847
页数:15
相关论文
共 50 条
  • [21] Are Graph Neural Network Explainers Robust to Graph Noises?
    Li, Yiqiao
    Verma, Sunny
    Yang, Shuiqiao
    Zhou, Jianlong
    Chen, Fang
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 161 - 174
  • [22] Graph neural network based on graph kernel: A survey
    Xu, Lixiang
    Peng, Jiawang
    Jiang, Xiaoyi
    Chen, Enhong
    Luo, Bin
    PATTERN RECOGNITION, 2025, 161
  • [23] MBHAN: Motif-Based Heterogeneous Graph Attention Network
    Hu, Qian
    Lin, Weiping
    Tang, Minli
    Jiang, Jiatao
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [24] ON THE CHOICE OF GRAPH NEURAL NETWORK ARCHITECTURES
    Vignac, Clement
    Ortiz-Jimenez, Guillermo
    Frossard, Pascal
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8489 - 8493
  • [25] Neighborhood Convolutional Graph Neural Network
    Chen, Jinsong
    Li, Boyu
    He, Kun
    SSRN, 2023,
  • [26] Demystifying Graph Neural Network Explanations
    Himmelhuber, Anna
    Joblin, Mitchell
    Ringsquandl, Martin
    Runkler, Thomas
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I, 2021, 1524 : 67 - 75
  • [27] GraphPlanner: Floorplanning with Graph Neural Network
    Liu, Yiting
    Ju, Ziyi
    Li, Zhengming
    Dong, Mingzhi
    Zhou, Hai
    Wang, Jia
    Yang, Fan
    Zeng, Xuan
    Shang, Li
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (02)
  • [28] Graph Neural Network with Neighborhood Reconnection
    Guo, Mengying
    Sun, Zhenyu
    Wang, Yuyi
    Liu, Xingwu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 40 - 50
  • [29] Neural network approach to graph colouring
    Rahman, SA
    Jayadeva
    Roy, SCD
    ELECTRONICS LETTERS, 1999, 35 (14) : 1173 - 1175
  • [30] Learning to Reweight for Graph Neural Network
    Chen, Zhengyu
    Xiao, Teng
    Kuang, Kun
    Lv, Zheqi
    Zhang, Min
    Yang, Jinluan
    Lu, Chengqiang
    Yang, Hongxia
    Wu, Fei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8320 - 8328