A New Analytical Solution on the Frost Heaving Force of Circular Tunnel in Cold Regions

被引:7
|
作者
Yang, Zedong [1 ,2 ]
Ma, Xiaodong [3 ]
Xu, Longwei [4 ]
Hou, Shaojie [4 ]
Ren, Dezheng [4 ]
Feng, Qiang [4 ]
机构
[1] Guizhou Univ, Coll Civil Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Guizhou Prov Key Lab Rock & Soil Mech & Engn Safet, Guiyang 550025, Guizhou, Peoples R China
[3] Henan Commun Planning & Design Inst Co Ltd, Zhengzhou 450000, Peoples R China
[4] Shandong Univ Sci & Technol, Shandong Key Lab Civil Engn Disaster Prevent & Mit, Qingdao 266590, Peoples R China
关键词
Frost heaving force; Circular tunnels; Parameters sensitivity; Displacement method; Displacement analysis of surrounding rock; ANALYTICAL ELASTOPLASTIC SOLUTION; THERMAL INSULATION LAYER; SURROUNDING ROCK; COUPLED PROBLEM; SEEPAGE FIELDS; MODEL; STRESS; TEMPERATURE; SIMULATION; PARAMETERS;
D O I
10.1007/s00603-023-03744-y
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The phenomena of freezing damage in the cold regional tunnels have happened frequently. Therefore, in order to precisely calculate frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}), based on the displacement method, a new analytical solution was proposed. The analytical solution presented in this paper was verified by the results of the model test and field measurement of sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}, the imperfect contact effect between frozen and unfrozen zones of surrounding rock was considered and the influence of the interaction between any two factors on frost heaving force was studied by means of orthogonal experiment and analysis of variance. The results show that: (1) the inner radius of lining (ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}), excavation radius (r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document}) and freezing radius (rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}) are highly significant for sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document} and the interaction between the inner and outer radiuses of lining (i.e. , changes of the size in inner and outer radius of lining) is also highly significant for frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}); (2) the analytical solution presented in this paper can avoid the frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}) with tensional property under the condition of the circular tunnel under hydrostatic pressure; and (3) sensitivity function shows that the larger Young's modulus of lining (EI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{I}}$$\end{document}), inner radius of lining (ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}), freezing radius (rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}), linear frost heaving rate (beta 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta_0$$\end{document}) and Young's modulus of frozen surrounding rock (EII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{\text{II}}}$$\end{document}) are, the more sensitive the factors EI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{I}}$$\end{document}, ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}, rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}, beta 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta_0$$\end{document} and EII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ begin{document}$$E_{{\text{II}}}$$\end{document} are to sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}. It is expected that the results of this paper can give some novel insights for the anti-freezing design of tunnels. Inner radius of lining is the more sensitive to frost heaving force.The interaction between the inner and outer radiuses of lining is highly significant.The , 1 and are highly significant for frost heaving force.The analytical solution can avoid frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}) with tensional property.
引用
收藏
页码:3483 / 3508
页数:26
相关论文
共 50 条
  • [31] A damage model for frost heaving pressure in circular rock tunnel under freezing-thawing cycles
    Liu, Hongyan
    Yuan, Xiaoping
    Xie, Tiancheng
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2019, 83 : 401 - 408
  • [32] Seepage force in a drained circular tunnel: An analytical approach
    Park, Kyung-Ho
    Lee, Joo-Gong
    Owatsiriwong, Adisorn
    CANADIAN GEOTECHNICAL JOURNAL, 2008, 45 (03) : 432 - 436
  • [33] Erratum to: Dynamic response characteristics of a circular lined tunnel under anisotropy frost heave of overlying soil at the tunnel portal section in cold regions
    Shuo-cheng Zhang
    Wen-hua Chen
    Journal of Mountain Science, 2023, 20 : 1805 - 1805
  • [34] Analytical Elasto-plastic Solution for Frost Force of Cold-Region Tunnels considering Anisotropic Frost Heave in the Surrounding Rock
    Qiang Feng
    Shenggang Fu
    Chengxiang Wang
    Weiwei Liu
    Ying Wang
    Weiguo Qiao
    KSCE Journal of Civil Engineering, 2019, 23 : 3831 - 3842
  • [35] Analytical Elasto-plastic Solution for Frost Force of Cold-Region Tunnels considering Anisotropic Frost Heave in the Surrounding Rock
    Feng, Qiang
    Fu, Shenggang
    Wang, Chengxiang
    Liu, Weiwei
    Wang, Ying
    Qiao, Weiguo
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (09) : 3831 - 3842
  • [37] Model test study of frost heaving pressures in tunnels excavated in fractured rock mass in cold regions
    Bing Sun* China Railway First Survey and Design Institute Group
    Sciences in Cold and Arid Regions, 2010, 2 (05) : 405 - 410
  • [38] Incident analyses of frost heaving failure of municipal underground gas pipelines in cold regions of northern China
    Li, YaMin
    Li, HongSheng
    Liu, ZengLi
    Chen, LiShun
    SCIENCES IN COLD AND ARID REGIONS, 2011, 3 (06): : 473 - 477
  • [39] Model test study of frost heaving pressures in tunnels excavated in fractured rock mass in cold regions
    Sun, Bing
    SCIENCES IN COLD AND ARID REGIONS, 2010, 2 (05): : 405 - 410
  • [40] Semi-analytical solution of frost heave force for circular tunnels in strain-softening rock mass
    Shi, Linpo
    Xing, Meng
    Wang, Pengyu
    Wang, Kai
    Cao, Xiaowei
    Liu, Hui
    FRONTIERS IN EARTH SCIENCE, 2025, 13