A New Analytical Solution on the Frost Heaving Force of Circular Tunnel in Cold Regions

被引:7
|
作者
Yang, Zedong [1 ,2 ]
Ma, Xiaodong [3 ]
Xu, Longwei [4 ]
Hou, Shaojie [4 ]
Ren, Dezheng [4 ]
Feng, Qiang [4 ]
机构
[1] Guizhou Univ, Coll Civil Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Guizhou Prov Key Lab Rock & Soil Mech & Engn Safet, Guiyang 550025, Guizhou, Peoples R China
[3] Henan Commun Planning & Design Inst Co Ltd, Zhengzhou 450000, Peoples R China
[4] Shandong Univ Sci & Technol, Shandong Key Lab Civil Engn Disaster Prevent & Mit, Qingdao 266590, Peoples R China
关键词
Frost heaving force; Circular tunnels; Parameters sensitivity; Displacement method; Displacement analysis of surrounding rock; ANALYTICAL ELASTOPLASTIC SOLUTION; THERMAL INSULATION LAYER; SURROUNDING ROCK; COUPLED PROBLEM; SEEPAGE FIELDS; MODEL; STRESS; TEMPERATURE; SIMULATION; PARAMETERS;
D O I
10.1007/s00603-023-03744-y
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The phenomena of freezing damage in the cold regional tunnels have happened frequently. Therefore, in order to precisely calculate frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}), based on the displacement method, a new analytical solution was proposed. The analytical solution presented in this paper was verified by the results of the model test and field measurement of sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}, the imperfect contact effect between frozen and unfrozen zones of surrounding rock was considered and the influence of the interaction between any two factors on frost heaving force was studied by means of orthogonal experiment and analysis of variance. The results show that: (1) the inner radius of lining (ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}), excavation radius (r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document}) and freezing radius (rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}) are highly significant for sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document} and the interaction between the inner and outer radiuses of lining (i.e. , changes of the size in inner and outer radius of lining) is also highly significant for frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}); (2) the analytical solution presented in this paper can avoid the frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}) with tensional property under the condition of the circular tunnel under hydrostatic pressure; and (3) sensitivity function shows that the larger Young's modulus of lining (EI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{I}}$$\end{document}), inner radius of lining (ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}), freezing radius (rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}), linear frost heaving rate (beta 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta_0$$\end{document}) and Young's modulus of frozen surrounding rock (EII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{\text{II}}}$$\end{document}) are, the more sensitive the factors EI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\text{I}}$$\end{document}, ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_a$$\end{document}, rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_f$$\end{document}, beta 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta_0$$\end{document} and EII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ begin{document}$$E_{{\text{II}}}$$\end{document} are to sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}. It is expected that the results of this paper can give some novel insights for the anti-freezing design of tunnels. Inner radius of lining is the more sensitive to frost heaving force.The interaction between the inner and outer radiuses of lining is highly significant.The , 1 and are highly significant for frost heaving force.The analytical solution can avoid frost heaving force (sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_1$$\end{document}) with tensional property.
引用
收藏
页码:3483 / 3508
页数:26
相关论文
共 50 条
  • [1] A New Analytical Solution on the Frost Heaving Force of Circular Tunnel in Cold Regions
    Zedong Yang
    Xiaodong Ma
    Longwei Xu
    Shaojie Hou
    Dezheng Ren
    Qiang Feng
    Rock Mechanics and Rock Engineering, 2024, 57 : 3483 - 3508
  • [2] Analytical solution of frost heaving force in non-circular cold region tunnels
    Li Y.
    Chen S.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (01): : 196 - 207
  • [3] An analytical solution for the frost heaving force and displacement of a noncircular tunnel
    Zhu, Yimo
    Li, Yansong
    Hao, Zihan
    Luo, Li
    Luo, Jianxun
    Wang, Lu
    COMPUTERS AND GEOTECHNICS, 2021, 133
  • [4] Model test on frost heaving force of tunnel lining in cold region
    Qu, Mengfei
    Xie, Qiang
    Hu, Yi
    Li, Zhaoyang
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (09): : 1894 - 1900
  • [5] Frost-Heaving Pressure on lining of Tunnel Constructed in Severe Cold Regions
    Deng, Gang
    Wang, Jian-yu
    Zheng, Jin-long
    APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 : 1446 - +
  • [6] Study on frost deformation of rock and calculation method of frost heaving rate of tunnel surrounding rock in cold regions
    Qiu, Wenliang
    Shen, Fengqi
    Zhou, Jingyu
    Qi, Lin
    Xing, Mingming
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [7] A Simplified Viscoelastic Solution of the Frost Heaving Force of Cavity Water behind Tunnel Linings
    Guo, Jie-Tao
    Zhang, Zhe-Ming
    Tang, Yao-Lan
    Ji, Jian
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [8] Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock
    Lv, Zhitao
    Xia, Caichu
    Wang, Yuesong
    Luo, Jing
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 163 : 87 - 97
  • [10] An Analytical Solution of Frost Heaving Pressure for Cold-region Tunnel Considering Freeze-thaw Cycles and in-situ Stress
    Jiang, Wang-Tao
    Jiang, Hai-Qiang
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (04) : 668 - 681